Category Archives: Astrofísica

Nova técnica usa Hubble para confirmar existência de lua Hippocamp em Netuno

As sondas Voyager 1 e 2 nos mostraram que os planetas gasosos tinham uma grande coleção de luas a seu redor. As luas maiores foram estudadas logo e, com a chegada de dados a seu respeito, foi possível criar imagens artísticas vislumbrando seus visuais

Algumas das luas de Netuno e seus diâmetros (Imagem: NASA, ESA, A. Feild)
Nova técnica usa Hubble para confirmar existência de lua Hippocamp em Netuno

O planeta gasoso foi visitado pela Voyager 2 em 1989, quando descobrimos seis luas a seu redor. Em 2013 uma equipe do Instituto SETI anunciou a existência do objeto S / 2004 N1 ao redor de Netuno após analisar imagens do telescópio espacial Hubble registradas pela NASA em 2004. Na época, a equipe determinou que o objeto ficava a cerca de apenas 105 mil quilômetros de Netuno, completando uma órbita a cada 23 horas. Então, o objeto foi classificado como a menor lua das 14 conhecidas ao redor do planeta, estimando que seu diâmetro não seria maior do que 19 km.

Agora, uma nova equipe com pesquisadores do SETI, da NASA e de Berkeley divulgou um estudo atualizando a avaliação da pequena lua com observações do Hubble feitas em 2016, dando a ela o nome de Hippocamp — que remete a uma criatura com cabeça e cauda de peixe na mitologia grega. O apelido, aprovado pela União Astronômica Internacional, está de acordo com as convenções de nomenclatrura do sistema de Netuno, cujos nomes estão associados à mitologia greco-romana e ao mar.

A nova análise de Hippocamp foi publicada na revista Nature explicando que, para as novas observações, a equipe empregou uma técnica diferente em oito exposições sequenciais de 5 minutos, reorganizando os pixels para que eles pudessem “empilhar” imagens da pequena Lua umas sobre as outras, compensando seu movimento orbital no processo. Basicamente, os pesquisadores transformaram as oito exposições individuais em uma única de 40 minutos de duração. A técnica também permitiu a visualização da lua Naiad, que não era vista desde sua descoberta pela Voyager 2.

Nova técnica usa Hubble para confirmar existência de lua Hippocamp em Netuno
Algumas das pequenas luas de Netuno, com várias delas ainda não tendo imagens reais bem definidas (Imagem: Mark R. Showalter, SETI Institute)

Com o novo estudo, descobriu-se que Hippocamp é um mundo ligeiramente maior do que o imaginado anteriormente, tendo provavelmente um diâmetro de cerca de 34 quilômetros — mais ou menos o mesmo tamanho de Ultima Thule, objeto do Cinturão de Kuiper que vem sendo estudado pela New Horizons. Ainda, pelo fato de Hippocamp estar muito próxima de Netuno, os pesquisadores acreditam que a lua é mais jovem, se formando muito depois da lua Proteus (a maior das luas internas de Netuno), que fica a 420 km do planeta e se formou há cerca de 4 bilhões de anos — época em que esta lua deveria estar muito mais próxima de Netuno do que está hoje em dia.

A equipe também suspeita que Hippocamp já tenha sido parte de Proteus, sua “vizinha” mais próxima entre as luas de Netuno. É possível que um impacto de cometa em Proteus há muito tempo tenha desmembrado partes da lua, resultando, então, na formação de Hippocamp. E Proteus realmente tem uma enorme cratera de impacto — a Pharos —, com os cálculos prevendo que essa explosão projetou para o espaço detritos com 50 vezes o volume de Hippocamp. Esses detritos, quando reunidos em órbita pela força gravitacional de Netuno, podem então ter resultado na formação da pequena lua.

https://canaltech.com.br/espaco/nova-tecnica-usa-hubble-para-confirmar-existencia-de-lua-hippocamp-em-netuno-133285/

Nasa se prepara para descobrir a origem do universo em nova missão.

A Nasa anunciou o seu mais novo objetivo: encontrar respostas certeiras sobre como o universo surgiu e quais são os ingredientes para a vida dos sistemas planetários dentro da nossa galáxia.

A agência espacial norte-americana deseja lançar uma nova missão espacial em 2023 e os investimentos destinados para isso chegam a US$ 242 milhões — sem incluir os custos de lançamento.

Telescópio espacial SPHEREx será o responsável pela missão
Nasa se prepara para descobrir a origem do universo em nova missão.

Na missão, denominada SPHEREx, a Nasa usará um observatório espacial para coletar dados na Via Láctea. A jornada será feita em meio a 300 milhões de galáxias quando estiver em órbita. Além de tudo isso, ele terá que se deparar com 100 milhões de estrelas.

Durante o “passeio”, o SPHEREx vai procurar água e moléculas orgânicas, essenciais para a vida como conhecemos. Localizar as regiões onde as estrelas nascem também será parte da missão. Segundo a Nasa, os discos ao redor das estrelas podem ser o local em que novos planetas podem se formar.

“Esta incrível missão será um tesouro de dados únicos para os astrônomos. Ela fornecerá um mapa galáctico sem precedentes contendo ‘impressões digitais’ desde os primeiros momentos da história do universo. E teremos novas pistas para um dos maiores mistérios da ciência: O que fez o universo expandir tão rapidamente menos do que um nanossegundo depois do big bang?”, afirmou Thomas Zurbuchen, administrador associado do Diretório de Missões Científicas da Nasa.

No final de tudo, a missão vai ser capaz de criar um mapa de todo o céu. Os astrônomos poderão então explorar opções para novos estudos.

Colisão entre galáxia de Andrômeda com Via Láctea poderá ser o fim da humanidade?

Colisão entre galáxia de Andrômeda com Via Láctea poderá ser o fim da humanidade?
Apesar das previsões apocalípticas anunciadas anteriormente na sequência da colisão entre a galáxia de Andrômeda e a Via Láctea, astrônomos estimam uma perspectiva mais promissora para a humanidade.

Apesar das previsões apocalípticas anunciadas anteriormente na sequência da colisão entre a galáxia de Andrômeda e a Via Láctea, astrônomos estimam uma perspectiva mais promissora para a humanidade.
Um grupo de astrônomos conseguiu calcular o momento mais exato para a esperada colisão entre a Via Láctea e a galáxia de Andrômeda – a nossa galáxia vizinha mais próxima.

Anteriormente, os cientistas acreditavam que isso aconteceria em 3,9 bilhões de anos, mas os autores da pesquisa, publicada no Astrophysical Journal, rastrearam o movimento das estrelas usando o telescópio Gaia da Agência Espacial Europeia (ESA, na sigla em inglês) e determinaram que, de fato, a grande colisão acontecerá em 4,5 bilhões de anos.

Além disso, os autores preveem que não será uma colisão frontal, mas uma “varredura lateral”, que não será demasiado devastadora. E, como a distância entre as estrelas e as galáxias ainda é astronomicamente grande, o nosso Sistema Solar tem todas as chances de passar incólume pelo evento.

No entanto, antes da colisão com Andrômeda, a Via Láctea terá de suportar algo semelhante com a Grande Nuvem de Magalhães (LMC, na sigla em inglês) e que deverá acontecer em 2,5 bilhões de anos. Enquanto a Andrômeda é um pouco maior que a nossa galáxia, a LMC tem apenas 1/80 da massa da Via Láctea.

Ainda assim, a colisão com a LMC afetará a nossa galáxia, supostamente aumentando a massa do buraco negro supermassivo em seu centro e remodelando a Via Láctea em uma galáxia espiral padrão.



Esta é a última imagem do espaço que o telescópio espacial Kepler registrou

Esta é a última imagem do espaço que o telescópio espacial Kepler registrou
Esta é a foto “Last Light”, a última imagem registrada pelo já avariado Kepler (Foto: NASA)

Oficialmente aposentado em outubro do ano passado, o telescópio espacial Kepler ficou conhecido como o “caçador de exoplanetas”, pois com suas observações a ciência conseguiu descobrir (e confirmar) milhares de exoplanetas em nosso universo — aqueles que orbitam outras estrelas além do nosso Sol. Agora, a NASA divulgou esta que foi a última imagem registrada pelo telescópio.
A foto, que ganhou o título de “Last Light” (ou “Última Luz”), chegou à agência no dia 25 de setembro de 2018, na verdade, pouco antes de o combustível do Kepler se esgotar por completo. Naquele momento, as lentes do telescópio estavam apontadas para a constelação de Aquário, e nas imagens é possível observar o sistema TRAPPIST-1 e seus sete planetas rochosos. Já as faixas pretas que estão ao longo da foto (como se fossem molduras de uma colagem) são consequência de falhas aleatórias que afetaram a câmera do Kepler.

Você pode não ver lá muita graça nessa foto, até porque nos acostumamos a ver imagens deslumbrantes de objetos espaciais por conta do telescópio espacial Hubble, mas a verdade é que a missão do Kepler nunca foi registrar o espaço em imagens de tirar o fôlego (como é o caso do Hubble). O Kepler foi desenvolvido para proporcionar observações de objetos distantes, em especial estrelas, analisando a variação de seus brilhos para encontrar eventuais planetas passando em sua frente — que é o método do trânsito: quando um planeta passa em frente à sua estrela, o brilho capturado pelo Kepler é alterado, e os dados obtidos revelam coisas como tamanho, massa e outras características do planeta em questão.

E, como ainda não temos tecnologia suficiente para dar zoom em uma estrela extremamente distante para fotografar em detalhes os planetas em suas órbitas, telescópios como o Kepler são a melhor solução que temos hoje em dia nessa busca por exoplanetas. Com base nos dados analisados e nas constatações dos cientistas, então são criadas artes conceituais prevendo como tais exoplanetas aparentam ser.

Com dados do Kepler, foi possível detectar mais de 2.600 exoplanetas, sendo que o telescópio observou, no total, mais de 530 mil estrelas em quase 10 anos de história. Lançado em março de 2009, o Kepler recebeu a maior câmera digital desenvolvida até então para se observar o espaço. Seu sucessor é o telescópio espacial TESS, lançado em abril de 2018, e continuará a missão do Kepler na busca por exoplanetas, contando com tecnologias mais modernas do que as de 2009 e, claro, uma câmera ainda mais poderosa.

Fonte: NASA

Com participação de brasileiro, cientistas simulam buraco negro

O físico Maurício Richartz, professor da Universidade Federal do ABC (UFABC), é um dos autores do artigo, produzido pelo grupo de Silke Weinfurtner

Com participação de brasileiro, cientistas simulam buraco negro

Com participação de brasileiro, cientistas simulam buraco negro

Certos fenômenos que ocorrem em buracos negros, mas não podem ser observados diretamente nas investigações astronômicas, podem ser estudados por meio de simulações em laboratório. Isso se deve a uma analogia peculiar entre processos característicos de buracos negros e processos hidrodinâmicos. O denominador comum de uns e outros é o fato de as propagações de ondas se darem de forma bastante similar.

Essa possibilidade é explorada em um novo artigo publicado na Physical Review Letters. O físico Maurício Richartz, professor da Universidade Federal do ABC (UFABC), é um dos autores do artigo, produzido pelo grupo de Silke Weinfurtner, da School of Mathematical Sciences da University of Nottingham, no Reino Unido. O trabalho teve apoio da FAPESP por meio do Projeto Temático “Física e geometria do espaço-tempo”, coordenado por Alberto Vazquez Saa.

“Embora este estudo seja inteiramente teórico, temos feito também simulações experimentais no laboratório de Weinfurtner. O equipamento é, basicamente, um grande tanque de água, com dimensões de 3 metros por 1,5 metro. O tanque dispõe de um ralo no centro e de um aparato de bombeamento, que reintroduz a água que escoa. Isso possibilita que o sistema atinja um ponto de equilíbrio, no qual a quantidade de água que entra iguala a quantidade de água que sai. Dessa forma, conseguimos simular um buraco negro”, disse Richartz à Agência FAPESP.

O pesquisador explicou como isso é possível. “A água ganha velocidade à medida que escoa. Quanto mais próxima do ralo, mais rapidamente ela flui. Então, quando produzimos ondas na superfície da água, passamos a ter duas velocidades importantes: a velocidade de propagação das ondas na água e a velocidade de escoamento da água como um todo”, disse.

“Longe do ralo a velocidade das ondas é muito maior do que a velocidade do fluido. Por isso, as ondas podem se propagar em qualquer direção. Perto do ralo, porém, a situação muda: a velocidade do fluido torna-se muito maior do que a velocidade das ondas. E isso faz com que a onda seja arrastada pelo fluido, mesmo que ela se propague em sentido contrário. Dessa forma, é possível produzir, em laboratório, um simulacro do buraco negro”, prosseguiu.

No buraco negro astrofísico real, a atração gravitacional captura a matéria e impede o escape de qualquer tipo de onda – mesmo das ondas luminosas. No simulacro hidrodinâmico, são as ondas na superfície do fluido que não conseguem escapar do vórtice que se forma.

Em 1981, o físico canadense William Unruh descobriu que a similaridade dos dois processos, o do buraco negro e o hidrodinâmico, constitui mais do que uma simples analogia. De fato, feitas algumas simplificações, as equações que descrevem a propagação de uma onda nas vizinhanças do buraco negro tornam-se rigorosamente iguais às equações que descrevem a propagação da onda na água que escoa pelo ralo.

É isso que legitima investigar, no processo hidrodinâmico, fenômenos característicos de buracos negros. No novo estudo, Richartz e colaboradores estudaram o relaxamento de um simulacro de buraco negro hidrodinâmico fora do equilíbrio, levando em conta fatores que haviam sido ignorados até então. O fenômeno estudado é, em alguns aspectos, semelhante ao processo de relaxamento de um buraco negro astrofísico real que emite ondas gravitacionais após ser criado pela colisão de dois outros buracos negros.

“Uma análise cuidadosa do espectro das ondas revela as propriedades do buraco negro, como o momento angular e a massa. Em sistemas gravitacionais mais complexos, o espectro pode depender de mais parâmetros”, descreve o artigo publicado em Physical Review Letters.

Vorticidade
Um parâmetro geralmente ignorado nos modelos mais simples – e que foi considerado no estudo – é a vorticidade. Trata-se de uma grandeza empregada em mecânica dos fluidos para quantificar a rotação de regiões específicas do fluido em movimento.

Se a vorticidade é nula, a região simplesmente acompanha o movimento do fluido. Porém, se a vorticidade não é nula, além de acompanhar o fluxo, ela também rotaciona em torno de seu próprio centro de massa.

“Nos modelos mais simples, geralmente se assume que a vorticidade no fluido seja igual a zero. Isso é uma boa aproximação para regiões do fluido situadas longe do vórtice. Mas, para regiões próximas do ralo, já não é uma aproximação tão boa, porque, neste caso, a vorticidade se torna cada vez mais importante. Então, uma das coisas que fizemos em nosso estudo foi incorporar a vorticidade”, disse Richartz.

Os pesquisadores buscaram entender como a vorticidade influencia o amortecimento das ondas durante a propagação. Quando um buraco negro real é perturbado, ele emite ondas gravitacionais que oscilam com uma certa frequência. A amplitude das ondas decai exponencialmente com o tempo. O conjunto de ressonâncias amortecidas que descreve como o sistema excitado é levado de volta ao equilíbrio é caracterizado, tecnicamente, por um espectro de modos quase-normais de oscilação.

“Em nosso trabalho, investigamos como a vorticidade influencia os modos quase-normais no análogo hidrodinâmico do buraco negro. E nosso principal resultado foi o fato de termos encontrado algumas oscilações que decaem muito lentamente, isto é, que permanecem ativas por muito tempo, e que ficam localizadas espacialmente nas proximidades do ralo. Essas oscilações já não constituem modos quase-normais, mas um outro padrão denominado estados quase-ligados”, disse Richartz.

Um desenvolvimento futuro da pesquisa é produzir experimentalmente esses estados quase-ligados em laboratório.

Por que a estrela mais luminosa da galáxia é invisível a olho nu – e como se tornará aparente

Eta Carinae tem sido, depois do Sol, a estrela mais observada (por telescópios), fotografada e estudada do universo – ao menos pelos humanos.

Eta Carinae, estrela mais luminosa da Via Láctea, perderá nuvem de poeira que hoje ofusca seu brilho quando vista da Terra Imagem: Nasa/Nathan Smith/Berkeley

Por que a estrela mais luminosa da galáxia é invisível a olho nu – e como se tornará aparente

Apesar de brilhar com a intensidade de cinco milhões de sóis, a estrela conhecida mais luminosa da Via Láctea, Eta Carinae, localizada a 7,5 mil anos-luz do Sistema Solar, não é visível a olho nu da Terra.

Isso não vai durar para sempre, no entanto. Um estudo de um grupo internacional de pesquisadores, liderados pelo astrônomo brasileiro Augusto Damineli, da Universidade de São Paulo (USP), indica que em breve, em pouco mais de 10 anos, a nuvem de poeira e gás que a esconde dos olhos nus dos terráqueos terá se dissipado e ela poderá ser vista em toda a sua luminosidade.

Sua luz se tornará duas vezes e meia maior do que atualmente é visível por telescópios.

A Eta Carinae tem sido, depois do Sol, a estrela mais observada (por telescópios), fotografada e estudada do universo – ao menos pelos humanos. Mas também é uma das mais intrigantes e misteriosas.

Muito jovem, com apenas 2,5 milhões de idade, ou cerca 1,8 mil vezes mais nova que o Sol, ela é uma supergigante da raríssima classe das luminosas azuis (que têm uma temperatura mais quente), das quais se conhece apenas algumas dezenas.

Situada na constelação austral de Carina, à direita do Cruzeiro do Sul, Eta Carinae foi catalogada, em 1677, pelo astrônomo e matemático britânico Edmond Halley (1656-1742), famoso por ser o primeiro observador da órbita do cometa que que leva seu nome.

Mas ela começou a chamar realmente a atenção em 1843, quando uma grande erupção lançou ao espaço matéria sua equivalente à massa de dezenas de sóis. Como consequência do evento, sua luminosidade aumentou tanto que durante meses ficou visível durante o dia da Terra.

Em contrapartida, criou-se uma nebulosa em torno dela, com o formato de uma ampulheta ou lóbulos, chamada de Homúnculo, com 3 trilhões de quilômetros (4 meses-luz) de uma ponta a outra, que, junto com nuvens poeira e gases, lançadas durante a mesma explosão, ofusca seu brilho em direção ao nosso planeta. Além desta, houve pelo menos duas outras erupções menores conhecidas, uma vista em 1250 e outra em 1890.

Desde então, muito se aprendeu sobre esse astro. Grande parte das descobertas recentes se deve a Damineli, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da USP, autor principal do novo estudo, que se dedica a estudar Eta Carinae há cerca de 30 anos. Entre elas, a de que esta estrela é um sistema duplo, composto por dois astros.

Imagens de raio x da estrela dão pistas sobre seu comportamento

Por que a estrela mais luminosa da galáxia é invisível a olho nu – e como se tornará aparente

Ele descobriu que a cada 5,5 anos a estrela sofre um pequeno “apagão” para quem a observa da Terra. Damineli concluiu que isso deve ocorrer porque o sistema é duplo e uma das estrelas, a menor, passa na frente da outra. Hoje, isso é um fato aceito por todos.

De acordo com ele, a estrela menor tem 30 vezes a massa do Sol e a maior, 90. “Se fosse colocada no lugar da nossa estrela, a superfície desta última estaria além da órbita da Terra, entre nosso planeta e Marte”, diz. “Ela se ilumina escondida atrás da poeira com uma potência de 5 milhões de sóis, o que está no limite teórico, um pouco mais que isso, ela evaporaria”, explica Damineli.

“Nos últimos 20 anos, astrônomos detectaram um aumento da luminosidade da Eta Carinae, que se fosse dela mesmo já teria ultrapassado esse limite. Com isso, surgiu a hipótese de que ela explodiria dentro de algumas décadas.”

No novo trabalho, ele conclui que não é isso que está acontecendo com a estrela. Para chegar a esse resultado, Damineli coordenou uma equipe de 17 pesquisadores do Brasil, Argentina, Alemanha, Canadá, e Estados Unidos, que analisou todos os dados de observação disponíveis sobre Eta Carinae dos últimos 80 anos. “Eles vêm de mais de 60 mil observações, a maioria feita por estudantes de Astronomia no telescópio da Universidade Nacional de La Plata, na Argentina, entre 2003 e 2015”, conta.

“Elas foram comparadas com os dados do telescópio espacial Hubble, que corrigiram as distorções das observações do solo e proporcionaram imagens de qualidade excepcional da estrela, separando-a da nebulosa do Homúnculo que a cerca.”

No artigo, publicado na revista científica Monthly Notices of the Royal Astronomical Society em 4 de janeiro, Damineli e seus colaboradores propõem que o aumento de luminosidade de Eta Carinae não é intrínseco a ela como muitos pesquisadores imaginaram, mas é causado pela dissipação de uma nuvem de poeira posicionada exatamente na frente dela, em direção à Terra.

O estudo revelou que, além de três nuvens de gás (chamados glóbulos de Weigelt) existe uma quarta. “Ela cobre completamente a estrela e seus ventos, apagando a maior parte de sua luz viajando em nossa direção”, explica o professor da USP. “Uma das outras três se desfez recentemente, um indício de que o mesmo deverá acontecer com a que tapa nossa visão.”

Escondendo a nebulosa

Apesar dessa nuvem de poeira, a Nebulosa do Homúnculo pode ser vista diretamente, pois é 200 vezes maior do que ela e sua luminosidade quase não é afetada. Mas isso também vai acabar em breve.

“Em 2032, ou quatro anos a mais ou a menos, a poeira terá desaparecido e a luminosidade aparente da estrela não aumentará mais, mas ofuscará a nebulosa”, diz Damineli. “Ou seja, em poucos anos, perderemos a oportunidade de tirar belas fotos do Homúnculo, mas veremos mais claramente o par de estrelas gêmeas dentro. Os apagões periódicos também poderão ser vistos com mais clareza.”

Sem a nuvem, o brilho de Eta Carinae visto da Terra será semelhante ao da estrela chamada Intrometida, da constelação do Cruzeiro do Sul.

“Por mais de meio século os cientistas acreditaram que a Eta Carinae era malcomportada, cheia de tiques e que vivia aprontando”, ressalta Damineli. “No entanto, daqui a alguns poucos anos será possível constatar que as duas estrelas companheiras são comportadas e com luminosidade estável, e que o meio interestelar ao redor delas é que causava uma aparente anormalidade.”

O mais grandioso espetáculo que será proporcionado por Eta Carinae ocorrerá, no entanto, em futuro incerto, de hoje a alguns milhares de anos, quando ela deverá explodir na forma de uma hipernova. “Sua morte deverá produzir uma explosão de raios gama, o tipo de evento mais energético que ocorre no universo”, afirma Damineli.

“O brilho, por sua vez, será umas dez vezes maior do que toda a Via Láctea e ela poderá ser vista em pleno dia. Mas podemos ficar tranquilos: não haverá risco para a vida na Terra.”

Novos estudos da física querem derrubar teorias de Einstein.

p>Albert Einstein já morreu? Sim. O velho gênio deu o suspiro final e murmurou, em alemão, suas últimas palavras indecifráveis no dia 18 de abril de 1955. Porém, atualmente, ele está m

Novos estudos da física querem derrubar teorias de Einstein.

orrendo pela segunda vez; isso se você acreditar na enxurrada de artigos e trabalhos lamentando a situação da física contemporânea.

Esqueça a recente e surpreendente descoberta das ondas gravitacionais, ondulações no espaço-tempo que Einstein já previra há um século e que indicam que o universo está coberto de buracos negros despedaçando e engolindo estrelas. Não, agora outro legado controverso de Einstein, algo muito mais profundo do que a gravidade ou a teoria quântica, está em jogo.

Mais do que qualquer um, foi Einstein quem estabeleceu o propósito da ciência moderna: a busca por uma teoria final do tudo, uma teoria unificada, como ele diria, que explicasse por que não haveria outra opção de constituição do universo a não ser esta em que vivemos. Ou, como ele colocou: “O que me interessa é saber se Deus teve alguma opção na criação do mundo.”

Se Albert lesse o título do artigo publicado no último verão na revista científica on-line “Quanta”, iria revirar no túmulo. Robbert Dijkgraaf, diretor do Instituto de Estudos Avançados, onde Einstein passou seus últimos 22 anos, escreve: “Não existem leis da física.” O que há é um espantoso cenário de possibilidades, quase infinitas, uma rede sutilmente conectada de versões da realidade. Há um universo para cada sonho bom ou ruim que você já teve, cada um com seu próprio conjunto de partículas, forças, leis e dimensões, ele afirma no artigo.

Esse cenário, também conhecido como multiverso, é o que vislumbram os estudiosos da teoria das cordas, que resolveram passar por cima do legado de Einstein na mais recente manifestação de criatividade científica. A teoria das cordas une a gravidade, que curva o cosmo, com a mecânica quântica, que descreve a aleatoriedade, ao estabelecer que as partes constituintes da natureza são como pequenas cordas de energia vibrando em 11 dimensões.

A teoria foi descrita como uma parte da física do século 21 que caiu no século 20 por acidente – e que talvez necessite de matemáticos do século 22 para poder ser compreendida. O resultado é um labirinto matemático com 10^500 soluções, cada uma representando um universo em potencial. A princípio, um desses universos seria o nosso, mas ninguém sabe qual, pois a matemática e a física são terrivelmente complexas. Ou como se lê no artigo de Dijkgraaf: “Se nosso mundo é um entre muitos, como lidar com as alternativas? O ponto de vista atual pode ser entendido como o extremo oposto do sonho de Einstein de um único cosmo.”

Questionado em Princeton, Dijkgraaf disse que o título do artigo, o qual ele não escreveu, talvez tenha sido um exagero e que provavelmente exista um princípio fundamental, mas, o que quer que ele seja, está por trás da teoria das cordas. No entanto, ninguém, nem mesmo os fundadores da teoria das cordas, consegue dizer o que é. Cientistas foram levados a essa ideia após descobrirem, há duas décadas, que uma força misteriosa, a energia escura, está acelerando a expansão do universo, fazendo com que as galáxias se distanciem umas das outras cada vez mais rapidamente através do tempo cósmico.

Essa energia escura carrega todas as características de um fator de correção, chamado constante cosmológica, que Einstein incluiu em suas equações um século atrás para depois rejeitá-lo como uma gafe. Mas a quantidade dessa energia escura é menor do que o valor previsto da constante cosmológica por uma razão de 10^60. Físicos só conseguem explicar a discrepância assumindo que o valor da constante de Einstein é aleatório em todos os universos em potencial; nós vivemos em um onde existe a quantidade correta de energia escura que possibilita a formação de estrelas e galáxias. Resumindo, nós moramos onde dá para morar.

Alguns físicos creem que o cenário é uma extensão lógica da revolução copernicana. Assim como a Terra não é o centro do sistema solar nem o único planeta, nosso universo também não é o único. Outros acreditam que a ideia de outros universos é um absurdo epistemológico, uma especulação sem saída, impossível de ser provada e uma traição do sonho einsteiniano de um único cosmo. Mesmo em nosso universo uno, os seguidores de Einstein estão enfrentando problemas, o caminho até o conhecimento definitivo está bloqueado ou talvez não exista.

A descoberta, após longa busca, em 2012, do bóson de Higgs confirmou a última parte pendente de um sistema matemático complexo conhecido como Modelo Padrão da Física de Partículas, o qual detalha todas as formas de matéria e energia que podem ser medidas em um laboratório. O Modelo Padrão explica, por exemplo, por que o computador liga e por que uma gardênia tem um cheiro tão doce.

Contudo, o modelo funciona bem demais. Físicos que estudam partículas filtraram os restos de trilhões de colisões subatômicas realizadas no Grande Colisor de Hádrons, a imensa máquina em que se descobriu o Bóson de Higgs. Até agora, eles conseguiram confirmar que o Higgs se comporta da maneira prevista pelo Modelo Padrão.

Apesar de ser uma grande conquista intelectual, foi incapaz de revelar alguma discrepância que pudesse levar a uma teoria mais abrangente. Mais especificamente, os pesquisadores não acharam pistas de um fenômeno que eles tanto buscam, a supersimetria, que faria a conexão entre as forças físicas individuais e forneceria toda uma nova gama de partículas elementares, incluindo, talvez, o que forma a matéria escura.

A supersimetria, no entanto, pode ter sido sempre uma ilusão, segundo Sabine Hossenfelder, teórica do Instituto de Estudos Avançados de Frankfurt. Ela se destacou no ano passado como uma das críticas mais contundentes da física moderna com seu novo e provocador livro, “Lost in Math: How Beauty Leads Physics Astray”. Ela argumenta que, ao exaltar a elegância matemática, físicos têm perdido o rumo. “Eles achavam que a Mãe Natureza era elegante, simples e generosa em dar pistas; eles acreditavam poder escutar seus sussurros enquanto conversavam entre si”, escreve ela. Físicos que estudam partículas respondem que eles apenas têm seguido princípios consagrados e de sucesso comprovado. Eles perseguiram o Bóson de Higgs por meio século e quase desistiram até a natureza finalmente cuspi-lo para eles.

Enquanto isso, os cosmólogos, um grupo sabidamente rabugento, chegaram ao próprio Modelo Padrão de Partículas para o nosso universo em particular. De acordo com eles, átomos — aquilo de que você, eu e as estrelas somos feitos– representam apenas 5% do peso do cosmos. A matéria escura, da qual nada conhecemos a não ser que sua gravidade coletiva esculpe e segura as galáxias unidas, representaria 25%. Os 70% restantes seriam de energia escura, que estaria afastando tudo; outro assunto do qual não sabemos nada. Nós só tomamos conhecimento dessa “parte escura” por causa do efeito que a gravidade tem sobre o universo luminoso, o movimento das estrelas e galáxias. Ora, uma teoria que deixa 95% do universo sem identificação dificilmente é uma indicação de que a ciência encerrou seu trabalho.

Alguns astronautas acreditam que, talvez, não tenhamos compreendido a gravidade no fim das contas. “Minha preocupação é que podemos estar endeusando Einstein de forma excessiva”, confessou Stacy McGaugh, astrônomo da Universidade Case Western Reserve, ao Gizmodo em junho.

O melhor presente para os cientistas neste Natal é uma nova teoria física que possa tirá-los desse impasse dos modelos padrões e fornecer novas pistas para nossa existência. Talvez esse avanço venha de finalmente descobrir o que é a matéria escura ou do Grande Colisor de Hádrons, que continuará provocando a colisão de partículas subatômicas pelos próximos 20 anos em busca de novas forças e fenômenos. Cada colisão registrada é mais um passo em direção ao desconhecido.

Por ora, o universo pode ter 11 dimensões ou ser um sonho de alguém. A vida pode ter começado em Marte ou em uma fonte hidrotermal, ou, talvez, sejamos todos bits de uma simulação computadorizada controlada por alguém. Descobrir quem somos e como a natureza se organiza é uma das buscas fundamentais do ser humano, como a arte ou a música. E continuará sendo.

Hossenfelder, apesar de todo o ceticismo, conclui seu livro de forma esperançosa ao profetizar: “A próxima grande descoberta ocorrerá neste século, e será linda”, conclui.

“Ninguém criou o universo”: Stephen Hawking explica por que Deus não existe

Existe vida inteligente fora da Terra? É possível prever o futuro? E fazer uma viagem no tempo? Sobreviveremos no nosso planeta? Deveríamos tentar colonizar outros cantos do universo? A inteligência artificial vai nos superar? Deus existe?

“Ninguém criou o universo”: Stephen Hawking explica por que Deus não existe

“Ninguém criou o universo”: Stephen Hawking explica por que Deus não existe

Respostas para essas perguntas nada fáceis que Stephen Hawking nos oferece em “Breves Respostas Para Grandes Questões”, livro póstumo que acaba de chegar às livrarias pela Intrínseca. Hawking, que morreu no último mês de março aos 76 anos, foi um dos pesquisadores mais respeitados e conhecidos de nossa história recente. Dominando a matemática, a física e a cosmologia, preocupou-se em não deixar seu conhecimento limitado à academia e atingiu o grande público ao lançar obras como “Uma Breve História do Tempo” e “O Universo Numa Casca de Noz”.

“A maioria das pessoas acredita que ciência de verdade é difícil e complicada demais. Não concordo com isso. Pesquisar sobre as leis fundamentais que governam o universo exigiria uma disponibilidade de tempo que a maioria não tem; o mundo acabaria parando se todos tentassem estudar física teórica. Mas a maioria pode compreender e apreciar as ideias básicas, se forem apresentadas de maneira clara e sem equações, algo que acredito ser possível e que sempre gostei de fazer”, escreve o cientista.

Hawking segue essa linha de divulgação científica para leigos em “Breves Respostas Para Grandes Questões”, que reúne um material descoberto em seus arquivos logo após sua morte. Quem tem o livro em mãos só não deve achar, no entanto, que as respostas breves do autor se limitem a poucos parágrafos – estamos diante de temas que rendem pesquisas profundas, que muitas vezes chegam a conclusões ou possibilidades diferentes, vale lembrar.

Para falar a respeito da existência ou não de algum deus, por exemplo, ao longo de 12 páginas o cientista passa por questões de linguagem, pelas leis da natureza, equações científicas básicas e dá uma aula sobre energia negativa que eu não me meterei a reproduzir, tudo para embasar o parecer. Passa ainda pela história, lembrando que a ciência explicou quase todos os fenômenos anteriormente atribuídos a divindades, restando apenas o momento da criação do universo como um cantinho onde algum deus ainda poderia estar escondido.

“Ninguém criou o universo”: Stephen Hawking explica por que Deus não existe

“Ninguém criou o universo”: Stephen Hawking explica por que Deus não existe

“As leis da natureza nos dizem que não só o universo pode ter surgido sem ajuda, como um próton, e não ter exigido nada em termos de energia, como também é possível que nada tenha causado o Big Bang. Nada. […] À medida que viajamos de volta no tempo em direção ao momento do Big Bang, o universo fica cada vez menor e continua diminuindo até finalmente chegar a um ponto em que se torna um espaço tão ínfimo que na verdade se trata de um único buraco negro infinitesimalmente pequeno e denso. E, assim como acontece com os buracos negros que hoje flutuam pelo espaço, as leis da natureza ditam algo verdadeiramente extraordinário. Elas nos dizem que aí também o próprio tempo tem que parar. Não podemos voltar a um tempo anterior ao Big Bang porque não havia tempo antes do Big Bang. Finalmente encontramos algo que não possui uma causa, porque não havia tempo para permitir a existência de uma. Para mim, isso significa que não existe a possibilidade de um criador, porque ainda não existia o tempo para que nele houvesse um criador”, escreve Hawking, que depois deixa sua posição ainda mais clara:

“Quando me perguntam se um deus criou o universo, digo que a pergunta em si não faz sentido. O tempo não existia antes do Big Bang, assim não existe tempo no qual deus produziu o universo. É como perguntar onde fica a borda da Terra. A Terra é uma esfera e não tem borda; procurá-la é um exercício fútil. […] Se eu tenho fé? Cada um é livre para acreditar no que quiser. Na minha opinião, a explicação mais simples é que deus não existe. Ninguém criou o universo e ninguém governa nosso destino. Isso me levou a perceber uma implicação profunda: provavelmente não há céu nem um além-túmulo. Acho que acreditar em vida após a morte não passa de ilusão. Não existe evidência confiável disso e a ideia vai contra tudo que sabemos em ciência. Acho que, quando morremos, voltamos ao pó. Mas, em certo sentido, continuamos a viver: na influência que deixamos, nos genes que passamos adiante para nossos filhos. Temos apenas esta vida para apreciar o grande plano do universo, e sou extremamente grato por isso”.

Dentre os muitos momentos interessantes do livro, também merece destaque a resposta que Hawking dá para a pergunta “Qual é a maior ameaça ao futuro do planeta?”. Para ele, a mudança climática descontrolada deveria ser nossa principal preocupação para que o mundo não vire um forno. “Uma elevação na temperatura do oceano derreteria as calotas polares e causaria a liberação de grandes quantidades de dióxido de carbono. Ambos os efeitos poderiam deixar nosso clima como o de Vênus, mas com uma temperatura de 250ºC”. Fica mais esse alerta para quem acha que aquecimento global é uma mentira – ou que é mera vontade de deus.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos

Caçadores da “partícula fantasma”

Por ser tão leve, neutro e pequeno, o neutrino, uma das mais abundantes partículas do Universo, atravessa tudo a todo momento sem ser notado. E aí estava um grande desafio da ciência. Para detectar um neutrino que chegou na Terra vindo de uma galáxia distante, foi necessário construir um experimento espantoso. Os cientistas instalaram 5.160 sensores do tamanho de holofotes de navio em um cubo de gelo de um quilômetro cúbico, enterrado a um quilômetro e meio de profundidade no coração da Antártida.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Em 2013, um neutrino vindo de uma distante galáxia foi detectado no grande cubo de gelo. A caçada de partículas de mais de um século começava a chegar ao fim, explicou o físico americano Francis Halzen, líder das pesquisas no IceCube. Ele esteve em São Paulo em outubro, quando foi apresentado como integrante do Comitê Internacional do Instituto Principia — um centro brasileiro recém-inaugurado de produção e difusão científica.

A busca pela origem dos raios cósmicos

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

A história dessa caçada remonta a uma experiência um tanto divertida, realizada em 1912. Os cientistas não sabiam o que fazia com que certos materiais na Terra ganhassem ou perdessem elétrons –a chamada ionização. E ficavam surpresos ao perceberem que o fenômeno ganhava intensidade diferente em locais altos, como no topo da torre Eiffel.

Para desvendar o mistério, o físico austríaco Victor Hess subiu aos céus em um balão levando sensores de radiação. Quanto mais subia, mais forte ficava a radiação captada. A conclusão de Hess foi que existiam partículas ionizantes vindo do espaço. Ele as batizou de raios cósmicos. “Os cientistas têm procurado de onde essas partículas partem há mais de um século”, conta Francis Halzen.

Que tiro foi esse?

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Os raios cósmicos são as partículas com as mais altas energias já observadas pelos cientistas. Grande parte é gerada em explosões de estrelas na Via Láctea. Mas aqueles com energias mais altas só podem ser produzidos em eventos cataclísmicos fora da Via Láctea, como explosões de supernovas e choques de galáxias.

Uma chuva de raios cósmicos, composta por prótons, elétrons, neutrinos, raios gama e outras partículas, cai constantemente sobre a Terra, mas nenhum cientista fazia ideia ao certo de onde vinham e o que os disparavam. “A forma que temos para conhecer o Universo é detectando a radiação que chega até nós”, explica Halzen. Os telescópios permitem observar as ondas eletromagnéticas que alcançam a Terra de diferentes formas — em luz visível, infravermelho, raios-x, ondas de rádio, etc.

“Mas os raios cósmicos que nos atingem chegam na forma de partículas”, completa o físico americano.

Entram aí algumas dificuldades: primeiro, qual instrumento utilizar para visualizar esses raios, uma vez que os telescópios não os captam. Outro problema é qual partícula observar. Prótons e elétrons são desviados de um lado para o outro, o que dificulta rastrear a origem.

Para encontrar a fonte dos raios cósmicos, portanto, seria necessário achar algo que viajasse até a Terra em linha reta. O pequeníssimo e invisível neutrino, quem diria, era a solução.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

 

Caçadores da “partícula fantasma”

Caçadores da "partícula fantasma"

Caçadores da “partícula fantasma”

O apelido “partícula fantasma” não é exagero. Neutrinos são levíssimos — algumas centenas de vezes mais leves que o elétron –, não têm carga elétrica e quase não possuem massa. De tão pequenos, atravessam astros e campos magnéticos sem se desviar, interagindo muito debilmente com a matéria. Bilhões dessas “partículas fantasmas” perpassam cada centímetro quadrado da Terra (e de nossos corpos) a cada segundo, vindas do espaço.

Os neutrinos existem em abundância no Universo conhecido, perdendo em número apenas para o fóton, a partícula de luz. Além de comporem os raios cósmicos, também são produzidos no Sol e surgem em reatores nucleares e aceleradores de partículas na Terra. A diferença é que os neutrinos dos raios cósmicos possuem energias altíssimas.

“A busca [por neutrinos] passou a fazer parte de uma das maiores questões da física e da astronomia: qual é a origem dos raios cósmicos?”, disse Halzen. Como viajam de suas fontes sem serem bloqueados e sem desvios, eram a pista certeira que os cientistas queriam. Mas como observar uma partícula praticamente invisível?

Diferentes experimentos já foram realizados para tentar flagrar neutrinos. Um deles, o Super-Kamiokande, construído no Japão em 1983, consiste numa piscina cilíndrica com 50 mil toneladas de água rodeada por 11.200 sensores de luz. Outro experimento feito na década de 1990 demonstrou que o gelo extremamente claro da Antártida podia interagir com neutrinos.

Essas armadilhas de neutrinos precisam ser grandes o suficiente para aumentar a probabilidade de captura de uma entre bilhões de “partículas fantasmas”. O neutrino não é observado diretamente, mas a partir de partículas secundárias eletricamente carregadas que são produzidas quando ele atravessa a água ou o gelo. “O IceCube foi construído para fazer exatamente isso”, conta Halzen.

A armadilha na Antártida

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Caçadores da “partícula fantasma”

Não foi fácil construir a engenhoca. O frio do polo Sul proíbe trabalhar no inverno, quando as temperaturas chegam a -80°C. Assim, foram necessários sete verões, entre 2004 e 2010, para perfurar e instrumentalizar 86 poços que chegavam a 2.450 metros de profundidade — ponto em que ficam os sensores que estão no pé do grande cubo de gelo.

Para ganhar tempo e aproveitar bem a luz do Sol que nunca se põe nessa época, os mais de 300 engenheiros, técnicos e cientistas se revezavam ao longo de 24 horas, todos os dias. Os sensores precisavam ser instalados rapidamente nos buracos de gelo derretido, antes que a água voltasse a congelar.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

A construção do IceCube contou com a colaboração de mais de 40 instituições de pesquisa de todo o mundo e o investimento de 279 milhões de dólares (cerca de R$ 1 bilhão), a maior parte feita pela Fundação Nacional de Ciências dos EUA. Após 2,1 milhões de quilos de carga levadas para a Antártida, as obras do Ice Cube chegaram ao fim, “concluídas no prazo, dentro do orçamento e excedendo significativamente as especificações de desempenho”, como diz relatório do observatório.

Era importante saber exatamente o que havia no gelo. Qualquer interferência no momento da detecção de um neutrino precisaria ser compreendida. Halzen explica que supercomputadores radiografaram e mapearam cada grão de poeira ali congelado. Calibrada a armadilha, bastava esperar a presa aparecer.

A montagem no IceCube

Laboratório custou 279 milhões de dólares (R$ 1 bilhão) e foi finalizado sem atrasos

Flagra e delação

Flagra e delação.

Flagra e delação.

Em 2013, os caçadores de neutrinos liderados por Halzen observaram uma extraordinária luminosidade azul dentro do cubo gelado. Tratava-se do efeito chamado Cherenkov, que ocorre quando uma partícula carregada eletricamente atravessa um meio como o gelo em velocidade superior à da luz nesse meio (no gelo, a luz pode se deslocar em velocidade mais baixa e inferior a de outros elementos).

Essa radiação eletromagnética era fruto de múons produzidos pela interação entre o gelo e uma outra partícula que havia adentrado o cubo. Eureca! Um neutrino de alta energia passava por ali. Com cerca de 300 teraelétrons-volts (TeV), quase 50 vezes a energia de partículas aceleradas no LHC (o maior acelerador de partículas do mundo), era certo que vinha de fora da Via Láctea.

Os sensores do IceCube registraram todos os dados das ondas de luz geradas. E os computadores do laboratório traçaram as coordenadas da trajetória da “partícula fantasma” dentro do cubo. O que o neutrino acabara de contar aos cientistas era a direção exata de sua trajetória de bilhões de anos-luz até a Terra. Mas nada mais do que isso. “Você vê os neutrinos cósmicos vindo do céu, mas ainda não sabe de onde estão vindo”, conta Halzen sobre a alegria misturada com frustração do momento da descoberta.

Como desvendar o mistério? Os cientistas sabem que o neutrino viaja praticamente na velocidade da luz. E se, com a direção do neutrino em mãos, eles olhassem para o céu e tentassem localizar alguma luz no ponto de onde ele veio? É elementar, diria um Sherlock Holmes da ciência.

Nasa

Operação mundial e fim do mistério

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Operação mundial e fim do mistério…

Existem diversos telescópios e detectores de ondas eletromagnéticas espalhados pela Terra e em órbita no espaço. Em 22 de setembro de 2017, no exato momento em que detectou um novo neutrino de alta energia, o IceCube emitiu um alerta para a comunidade astronômica internacional. Mais de 20 observatórios voltaram imediatamente suas lentes e sensores para o céu na direção que o neutrino do IceCube apontava.

A ideia era encontrar qualquer sinal que estivesse partindo daquela fonte. As observações começaram a ser feitas simultaneamente por times que totalizavam mais de mil cientistas de diferentes países. Até que um primeiro sinal foi identificado pelo telescópio espacial Fermi, da Nasa: um forte clarão em forma de raios gama, ao lado do ombro esquerdo da constelação Orion no céu noturno.

Tratava-se do blazar TXS 0506+056, localizada a 4 bilhões de anos-luz da Terra. Esse objeto celestial concentra grande quantidade de energia e está associado a um buraco negro. O Fermi sabia de sua existência há 10 anos, mas nunca tinha visto um brilho tão intenso vindo de sua direção. Depois do Fermi, o observatório Magic, situado nas Ilhas Canárias, também detectou o blazar. E outros observatórios viram o clarão. Bingo, era aquela a fonte.

Para Halzen, a operação conjunta marcou o início de uma nova era na astronomia. “A capacidade de fazer com que telescópios espalhados pelo globo realizem uma descoberta em cooperação com um detector de neutrinos é um marco do que os cientistas estão chamando de astronomia de múltiplas mensagens”, diz o cientista.

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Operação mundial e fim do mistério…

Hoje, diversos neutrinos são detectados no Ice Cube a todo momento, e o laboratório tornou-se um importante centro de estudos de ponta. Ali são feitas pesquisas em astrofísica, glaciologia, tomografia da Terra, física quântica e partículas exóticas, dentre outras áreas. Há a expectativa de que descobertas sobre a matéria escura possam vir de lá.

Quanto aos raios cósmicos e os neutrinos, Halzen ressalta que eles continuam atingindo a Terra a todo instante, sem que saibamos de onde partem todas as gotas dessas tempestades. O que há de surpreendente então na saga da caçada de neutrinos?

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

A surpresa é que nós conseguimos solucionar o problema de mais de um século, e de uma maneira totalmente inesperada. Nós sabemos agora qual é uma das fontes dos raios cósmicos

Francis Halzen, cientista líder do IceCube

Como cientistas criaram armadilha de gelo na Antártida para descobrir uma fonte de raios cósmicos.

Francis Halzen, cientista líder do IceCube.

Origem da Via Láctea: megafusão criou nossa galáxias como a conhecemos hoje.

Pesquisa mostra que a Via Láctea como conhecemos hoje é resultado de uma fusão com a galáxia Gaia-Enceladus, há 10 bilhões de anos

Pesquisa mostra que a Via Láctea como conhecemos hoje é resultado de uma fusão com a galáxia Gaia-Enceladus, há 10 bilhões de anos.

Como o espaço sideral é uma máquina do tempo e também uma sucessão de fusões, junções e separações, cada nova descoberta tem o poder de contar um pouquinho mais sobre a formação dele e, em última instância, de nós mesmos.

E a descoberta mais recente é de que a Via Láctea, galáxia onde está o Sistema Solar – e onde nós estamos -, se fundiu a outra galáxia, uma parceira chamada Gaia-Enceladus, 10 bilhões de anos atrás. A pesquisa a respeito, que ajuda a compreender um pouco sobre os movimentos e as formações naturais do espaço, está na última edição da revista científica Nature.

Essa fusão com Gaia-Enceladus deu origem à maior parte do halo da Via Láctea. Também teria sido responsável por moldar o seu disco, dando a ele uma certa forma inflada. Quem descobriu e descreveu precisamente como ocorreu essa megafusão espacial foi a astrônoma Amina Helmi e sua equipe, todos cientistas da Universidade de Groningen, na Holanda.

Soma de galáxias

Já era um consenso no meio astronômico de que grandes galáxias, como a Via Láctea, sempre são a fusão de galáxias menores. Assim, a Via Láctea não poderia ser diferente: também é produto de pequenas fusões.

Helmi se tornou obcecada pelo tema. Ao longo de sua carreira, a pesquisadora revirou os lugares conhecidos da Via Láctea, em busca de “fósseis” que pudessem auxiliar em sua pesquisa. A astrônoma lançou mão de dados como evolução, composição química, posição e trajetória das estrelas para compreender suas histórias. Com isso, é possível identificar as fusões que criaram o início da Via Láctea.

A cientista usa a composição química, a posição e a trajetória das estrelas no halo para deduzir sua história e, assim, identificar as fusões que criaram o início da Via Láctea.

Os dados foram obtidos por meio do satélite Gaia, uma bem-sucedida missão da Agência Espacial Europeia. Em abril deste ano, o projeto disponibilizou uma avalanche de dados para a comunidade astronômica, com informações de uma base de 1,7 bilhão de estrelas.

Comportamento estelar

Helmi observa sistematicamente a organização da Via Láctea desde os últimos 20 anos. “Esperávamos que as estrelas se fundissem com os satélites no halo”, afirma. “O que não esperávamos encontrar era o fato de que a maioria das estrelas-halo de fato tivesse uma origem compartilhada, em uma fusão muito grande”, diz.

Os cientistas identificaram que a “assinatura química” de muitas estrelas do halo são claramente diferentes das estrelas “nativas” da Via Láctea. “Estas são grupos bastante homogêneo, o que indica que eles compartilham uma origem comum”, comenta, sobre as “nativas”.

“As estrelas mais jovens da Gaia-Encefalodus são na verdade mais jovens do que as estrelas nativas, sobretudo na região hoje do disco principal”, diz Helmi. “Isso significa que o progenitor desse fenômeno já estava presente quando a fusão aconteceu, e Gaia-Encefalodus, por causa de suas dimensões diferentes, balançou e encheu-se.”

Em estudo anterior, a astrônoma Helmi já havia descrito o fenômeno. Ao analisar um conjunto de estrelas de origem comum, ela concluiu que as estrelas dessa bolha no halo são escombros da fusão da Via Láctea com uma galáxia que era um pouco mais massiva.

Gaia-Enceladus

Helmi e sua equipe concluíram que estrelas desse tipo, localizadas nesses conjuntos, são os escombros da fusão entre Via Láctea e uma outra galáxia, há cerca de 10 bilhões de anos.

Essa galáxia é conhecida como Gaia-Enceladus, em homenagem a Enceladus ,gigante que, na mitologia grega, nasceu de Gaia – deusa da Terra – e Urano – deus do Céu.

Enceladus também foi o nome que escolheram para batizar uma lua do planeta Saturno.

Helmi bem lembrou de que dados sobre cinemática, química, idade e distribuição espacial das estrelas da Via Láctea já vinham sendo coletados e arquivados pelo projeto Gaia-Enceladus – antes dos dados disponibilizados neste ano.

O projeto de pesquisa existe há cerca de 10 anos. “Foi incrível olhar para os novos dados do Gaia e perceber aquilo que eu já vislumbrava”, afirma a especialista.

Missão Gaia

A Missão Espacial Gaia, da Agência Espacial Europeia, foi lançada em dezembro de 2013. O satélite tem o objetivo de monitorar dados de estrelas, realizando medições de posição, de velocidade radial e de luzes.