Category Archives: Física Clássica

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

     As ideias de matemáticos do século 19 deram a Einstein o que ele precisava para desenvolver a Teoria da Relatividade

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

As ideias de matemáticos do século 19 deram a Einstein o que ele precisava para desenvolver a Teoria da Relatividade

Sem as contribuições de János Bolyai, Nikolay Lobachevski e Bernhard Riemann, que descreveram o espaço curvo e as múltiplas dimensões, Albert Einstein teria enfrentado muitos obstáculos

O físico alemão Albert Einstein (1879-1955) é um gênio famoso. Sua imagem nos é familiar. Sua Teoria da Relatividade é célebre. Mas, sem as ideias de três matemáticos do século 19, essa que é a principal teoria de Einstein simplesmente não funcionaria.

A matemática é a chave para entender o universo físico. Como disse o filósofo italiano Galileu Galilei certa vez, sem o farol criado por essa ciência, estaríamos dando voltas em um labirinto escuro.

Matemáticos pioneiros deram a Einstein um mapa para navegar pelo labirinto mais escuro de todos: o tecido do Universo. János Bolyai, Nikolái Lobachevski e Bernhard Riemann criaram novas geometrias que nos levaram a mundos estranhos e flexíveis.

“Einstein era um bom matemático intuitivo e teve um pouco de problema com essas ideias, mas sabia o que queria. Quando viu o que Riemann havia feito, soube que era isso”, disse o físico teórico Roger Penrose à BBC.

Teorias de Euclides em xeque

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Durante 2.000 anos, os axiomas consagrados no grande trabalho de geometria “Os elementos”, de Euclides, foram aceitos comoverdades matemáticas absolutas e inquestionáveis.

A geometria de Euclides nos ajudou a navegar pelo mundo, construir cidades e nações, dando ao ser humano o controle sobre seu entorno.

Mas, na Europa, em meados do século 19, surgiu uma crescente inquietação em relação a algumas ideias de Euclides. Os matemáticos começaram a questionar se poderia haver outro tipo de geometria que ele não havia descrito, geometrias nas quais os axiomas de Euclides podiam ser falsos.

É difícil dizer o quão radical era essa sugestão. Tanto que um dos primeiros matemáticos a contemplar essa ideia, o alemão Carl Frederick Gauss, relutava em falar sobre o tema, apesar de ser considerado, neste momento, um Deus no mundo matemático.

Tinha uma reputação impecável.

A geometria de Euclides nos ajudou a navegar pelo mundo, a construir cidades e nações.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Poderia ter dito qualquer coisa que a maioria dos matemáticos teria acreditado, mas se manteve em silêncio: não compartilhou com ninguém sua suspeita de que o espaço pudesse ser disforme.

‘Descobertas radicais’

Enquanto isso, na Hungria, Farkas Bolyai, outro matemático, também contemplava cenários em que a geometria de Euclides poderia ser falsa.

Bolyai havia estudado com Gauss na Universidade de Göttingen, na Alemanha, e voltado para sua casa na Transilvânia, na Romênia, onde havia passado anos lutando sem sucesso com a possibilidade de novas geometrias. Esse esforço o havia quase destruído.

“Viajei para além de todos os recifes desse infernal Mar Morto e sempre voltei com os mastros e velas danificados. Arrisquei sem pensar toda minha vida e felicidade.”

János Bolyai descobriu o que chamou de ‘mundos imaginários’

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

János Bolyai descobriu o que chamou de ‘mundos imaginários’.

Em 1823, recebeu uma carta do filho, também matemático, que estava com seu batalhão do Exército em Timisoara.

“Meu querido pai, tenho tantas coisas sobre as quais te escrever a respeito de minhas novas descobertas, que não posso fazer outra coisa que escrever essa carta, sem esperar sua resposta à minha carta anterior, e talvez não deveria fazê-lo, mas encontrei coisas lindas, que até a mim me surpreenderam, e seria uma pena perdê-las; meu querido pai verá e saberá, não posso dizer mais, apenas que do nada criei um mundo novo e estranho.”

O filho de Farkas Bolyai, János, havia descoberto o que chamou de “mundos imaginários”; mundos matemáticos que não satisfaziam os axiomas de Euclides, que pareciam ser completamente consistentes e sem contradições.

Bolyai escreveu imediatamente para o amigo Gauss contando as emocionantes descobertas que seu filho havia feito. Na sequência, Gauss enviou uma carta a um colega, elogiando o pensamento brilhante do jovem matemático.

“Recentemente, recebi da Hungria um pequeno artigo sobre a geometria não-euclidiana. O escritor é um jovem oficial austríaco, filho de um dos meus primeiros amigos. Considero o jovem geômetra J. Bolyai um gênio de primeira classe.”

Mas, na carta que escreveu a Bolyai, o tom foi bem diferente:

“Se começasse dizendo que não posso elogiar este trabalho, certamente ficaria surpreso por um momento. Mas não posso dizer o contrário. Elogiá-lo seria elogiar a mim mesmo. De fato, todo o conteúdo da obra, o caminho tomado por seu filho, os resultados aos quais se dirige, coincidem quase completamente com as minhas reflexões, que ocuparam parcialmente a minha mente nos últimos 30 ou 35 anos”.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Uma carta de Gauss sobre as ideias de János Bolyai deixou o jovem geômetra desconsolado.

Uma carta de Gauss sobre as ideias de János Bolyai deixou o jovem geômetra desconsolado

O jovem János ficou completamente inconsolável. Seu pai tentou confortá-lo: “Certas coisas têm sua época, quando se encontram em locais diferentes, como a primavera quando as violetas florescem em todas as partes”.

Apesar do incentivo do pai para publicar, János Bolyai não escreveu suas ideias até alguns anos depois. Foi tarde demais.

Ele descobriu pouco depois que o matemático russo Nikolái Lobachevski havia publicado ideias muito similares, dois anos antes dele.

Além das três dimensões

As geometrias radicais de Bolyai e Lobachevski estavam confinadas a nosso universo tridimensional.

Mas foi um aluno de Gauss, na Universidade de Göttingen, que levou essas novas geometrias para uma direção ainda mais exótica.

Bernhard Riemann era um matemático tímido e brilhante, que sofria de problemas de saúde bastante sérios. Um dos seus contemporâneos, Richard Dedekind, escreveu sobre ele:

“Riemann está muito infeliz. Sua vida solitária e seu sofrimento físico o tornaram extremamente hipocondríaco e desconfiado de outras pessoas e de si mesmo. Ele fez as coisas mais estranhas aqui só porque acredita que ninguém pode aguentá-lo”. Em sua solidão, Riemann estava explorando os contornos dos novos mundos que havia construído.

  Pressionado pela universidade, Riemann foi forçado a apresentar suas ideias radicais.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Pressionado pela universidade, Riemann foi forçado a apresentar suas ideias radicais

No verão de 1854, o introvertido Riemann enfrentou um grande obstáculo para poder se tornar professor na Universidade de Göttingen: teve que dar uma palestra pública na Faculdade de Filosofia. O departamento escolheu o tema: “Sobre as hipóteses que se encontram na base da geometria”.

Assim, ele se viu forçado a apresentar no dia 10 de junho as ideias radicais que havia formulado sobre a natureza da geometria. Na plateia, estava, entre outras pessoas, seu professor, Carl Frederick Gauss, campeão de matemática da época.

Ele mostrou aos matemáticos presentes como ver em quatro, cinco, seis ou mais dimensões, inclusive em N dimensões. Descreveu formas que só podiam ser vistas com as mentes dos matemáticos e as fez tão tangíveis para quem as escutava, como os objetos 3D são para a maioria das pessoas.

Se você não é matemático, há um lugar em que você pode experimentar algo próximo da quarta dimensão: o Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson.

  O Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson, representa a ideia da quarta dimensão..

O Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson, representa a ideia da quarta dimensão..

O Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson, representa a ideia da quarta dimensão

É um cubo de quatro dimensões no coração de uma Paris tridimensional, uma estrutura absolutamente impressionante pela qual poderiam passar as torres da Catedral de Notre Dame.

Mas mais surpreendente ainda é o poder da ideia que representa. Um supercubo no meio da capital francesa, com 16 esquinas, 32 bordas e 24 faces… extraordinário!

O arquiteto abriu para todos nós uma porta para outro mundo. Mas, para compreender realmente a vida além de três dimensões, se faz necessária a revolucionária matemática de Riemann.

Inspiração para Einstein

Cinco décadas após a célebre conferência de 1854, as ideias de Riemann viraram realidade.

Einstein estava tentando contemplar a estrutura do espaço quando se deparou com as teorias curvas do espaço N-dimensional desenvolvidas por Riemann.

“A princípio, ele não gostou. Pensou: ‘Os matemáticos complicam tanto a vida!'”, destaca o físico Roger Penrose.

 Segundo Einstein, os corpos têm um efeito de curvatura na estrutura do espaço-tempo ao seu redor.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Segundo Einstein, os corpos têm um efeito de curvatura na estrutura do espaço-tempo ao seu redor

“Mas ele logo soube que era o prisma certo, e era absolutamente crucial, porque essa geometria quadridimensional se enquadrava nas outras três dimensões, e Einstein se deu conta que poderia generalizá-lo da mesma maneira com que Reimann havia generalizado a geometria euclidiana ao torná-la curva.”

Usando a matemática de Riemann, Einstein promoveu um avanço extraordinário sobre a natureza do Universo: o tempo, ele descobriu, era a quarta dimensão.
A nova geometria de Riemann permitiu unificar espaço e tempo. E as estranhas geometrias curvas pensadas pela primeira vez por Gauss, descritas por Bolyai e Lobachevsky e generalizadas por Riemann, o ajudaram a resolver a relatividade.

Ao medir a distância entre dois pontos no espaço-tempo usando a geometria de Euclides, surgem diversos paradoxos preocupantes. Mas, quando se utiliza as geometrias não euclidianas de Bolyai e Lobachevsky, os paradoxos se dissolvem.

As geometrias destes matemáticos do século 19 foram a chave para a criação da Teoria da Relatividade. Essas ideias traçaram o mapa para navegar na estrutura do espaço e do tempo.

 

Nasa deve lançar nave que vai ‘tocar’ o Sol no dia 11

Nasa deve lançar nave que vai 'tocar' o Sol no dia 11

Nasa deve lançar nave que vai ‘tocar’ o Sol no dia 11

A Nasa, que há uma semana completou 60 anos de existência, está finalizando os preparativos para uma das missões espaciais mais audaciosas de sua história. Na madrugada do próximo sábado, um dos mais poderosos foguetes do mundo, o Delta IV Heavy, deverá iluminar os céus de Cabo Canaveral, na Flórida, levando em sua cápsula a nave Parker Solar Probe (PSP), que será o primeiro artefato humano a “tocar” o Sol.

Nasa deve lançar nave que vai 'tocar' o Sol no dia 11

Nasa deve lançar nave que vai ‘tocar’ o Sol no dia 11

No fim dessa aventura inédita, programada para durar sete anos, a PSP chegará a 6,3 milhões de quilômetros de distância da superfície do Sol, um sobrevoo muito próximo, considerando os mais de 150 milhões de quilômetros de distância que separam a Terra de sua estrela. Suportando temperaturas e níveis de radiação nunca enfrentados por outra espaçonave, a PSP tem o objetivo de desvendar uma série de mistérios científicos que intrigam astrofísicos há décadas.

Com custo de cerca de U$S 1,5 bilhão (aproximadamente R$ 5,5 bilhões), a missão deverá mudar radicalmente a compreensão sobre o Sol e sobre sua influência no clima espacial – incluindo as tempestades solares que afetam os sistemas de satélites e as redes de eletricidade na Terra, de acordo com Nicola Fox, do Laboratório de Física Aplicada da Universidade Johns Hopkins (EUA), que desenvolveu a missão PSP para a Nasa.

“A missão responderá questões sobre a física solar que têm nos deixado confusos por mais de seis décadas. É uma espaçonave carregada com inovações tecnológicas que resolverão muitos dos principais mistérios sobre a nossa estrela. Um dos objetivos centrais é descobrir por que a corona (parte externa da atmosfera) do Sol é tão mais quente que a superfície solar”, disse Fox.

Formada por plasma ultra-aquecido a milhões de graus, a corona envolve todo o Sol e consiste na parte externa de sua atmosfera – e ninguém sabe até hoje como ela pode ser milhares de vezes mais quente que a superfície e o interior do Sol. A corona também é, segundo cientistas, a origem do vento solar – um fluxo supersônico de partículas que o astro lança em todas as direções e afeta todo o Sistema Solar.

“Não sabemos como o vento solar se acelera tão rapidamente na corona, chegando a milhões de quilômetros por hora”, diz o diretor da divisão de ciência heliofísica da Nasa, Alex Young.

Para observar a origem dos ventos solares, a PSP vai “mergulhar” na corona. A nave deverá trazer mais informações sobre a corona e os ventos solares do que qualquer outro recurso científico já utilizado.

“Estamos nesse ambiente incrivelmente dinâmico do Sol e somos atingidos pelos ventos solares, que podem afetar não apenas a saúde de astronautas que trabalham no espaço, mas também nossos satélites, as telecomunicações e, em casos extremos, pode derrubar os sistemas de energia na Terra”, disse Young.

Pesquisadores confirmam teoria da relatividade de Einstein ao estudar estrela orbitando em buraco negro

É a primeira vez que a teoria é confirmada na região perto de um buraco negro supermassivo. Medição foi feita por “super” telescópio no Chile.

Ilustração mostra trajetória da estrela nos últimos meses ao redor do buraco negro (Foto: M. KORNMESSER/ESO)

Ilustração mostra trajetória da estrela nos últimos meses ao redor do buraco negro (Foto: M. KORNMESSER/ESO)

ma única estrela, girando em torno do enorme buraco negro no centro da Via Láctea, forneceu aos astrônomos uma nova prova de que Albert Einstein estava certo sobre a gravidade.

Há mais de 100 anos, a teoria geral da relatividade de Einstein revelou que a gravidade é o resultado da curvatura espaço-tempo, criada pela presença de massa e energia. Agora, em um artigo publicado nesta quinta-feira (26) na “Astronomy & Astrophysics”, uma equipe de pesquisadores relata a observação de uma característica da relatividade geral conhecida como redshift gravitacional.

Observações feitas com o telescópio conhecido como “Very Large Telescope” (telescópio muito grande, em tradução livre), do Observatório do Sul Europeu (ESO), revelaram pela primeira vez os efeitos previstos pela relatividade geral de Einstein sobre o movimento de uma estrela que passa pelo campo gravitacional perto do buraco negro supermassivo no centro da Via Láctea. Este resultado representa o ponto alto de uma campanha de observação de 26 anos usando os telescópios do ESO no Chile.

Buraco negro

Obscurecido pelas densas nuvens de poeira absorvente, o buraco negro supermassivo mais próximo da Terra está a 26.000 anos-luz de distância, no centro da Via Láctea. Com uma massa de quatro milhões de vezes a do Sol, o buraco negro é cercado por um pequeno grupo de estrelas que orbitam em torno dele em alta velocidade.

Esse ambiente extremo – o campo gravitacional mais forte de nossa galáxia – o torna o local perfeito para explorar a física gravitacional e, particularmente, testar a teoria geral da relatividade de Einstein.

A medição é a primeira vez que a relatividade geral foi confirmada na região perto de um buraco negro supermassivo.

À medida que a luz escapa de uma região com um forte campo gravitacional, suas ondas são esticadas, tornando a luz mais vermelha, em um processo conhecido como redshift gravitacional. Os cientistas, uma equipe conhecida como a colaboração GRAVITY, usaram o Very Large Telescope, localizado no deserto de Atacama, no Chile, para demonstrar que a luz da estrela foi deslocada para o vermelho pela quantidade prevista pela relatividade geral.

Os cientistas já tinha observado o redshift gravitacional antes. Na verdade, os satélites de GPS não funcionariam corretamente se o redshift gravitacional não fosse levado em consideração. Mas tais efeitos nunca foram vistos nas proximidades de um buraco negro, onde a gravidade é mais forte.

“Isso é completamente novo, e acho que é isso que torna emocionante – fazer esses mesmos experimentos não na Terra ou no sistema solar, mas perto de um buraco negro”, diz o físico Clifford Will da Universidade da Flórida em Gainesville.
A estrela S2
No “coração” da Via Láctea, esconde-se um enorme buraco negro supermassivo, com uma massa de cerca de 4 milhões de vezes a do sol. Muitas estrelas giram em torno deste buraco negro. Os pesquisadores se concentraram em uma estrela, conhecida como S2, que completa uma órbita elíptica ao redor do buraco negro a cada 16 anos.

Órbita é uma trajetória fechada que um astro faz em torno de outro. Órbita elíptica é o tipo de órbita feita, e nesse caso, a elipse é como um círculo achatado (e não circular). A órbita de todos os planetas do Sistema Solar é elíptica.

É a primeira vez que a teoria é confirmada na região perto de um buraco negro supermassivo. Medição foi feita por "super" telescópio no Chile.

Pesquisadores confirmam teoria da relatividade de Einstein ao estudar estrela orbitando em buraco negro

Em maio de 2018, a estrela ficou mais próxima do buraco negro, atingindo 3% da velocidade da luz – extremamente rápida para uma estrela. Nesse ponto, a estrela estava a apenas 20 bilhões de quilômetros do buraco negro. O que pode parecer distante, mas é apenas quatro vezes a distância entre o sol e Netuno.

Caça da Boeing que faria Brasil-Japão em 3h só será viável em 10 a 20 anos.

Caça da Boeing que faria Brasil-Japão em 3h só será viável em 10 a 20 anos.

Conceito do novo caça hipersônico, que poderá atingir 6.120 km/h (Divulgação)

Conceito do novo caça hipersônico, que poderá atingir 6.120 km/h (Divulgação)

A Boeing iniciou os estudos para o desenvolvimento de um novo caça hipersônico, capaz de voar a cinco vezes a velocidade do som, o equivalente a 6.120 km/h. O novo avião, no entanto, ainda deve demorar de 10 a 20 anos para se tornar viável, afirmou a Boeing em comunicado enviado ao blog Todos a Bordo. Caso realmente seja desenvolvido, o novo caça deverá ser o avião mais rápido já produzido na história da aviação.

Teoricamente conseguiria viajar entre São Paulo e Tóquio (Japão) em três horas. A fabricante norte-americana, no entanto, ainda não divulgou qual seria a autonomia de voo do avião em velocidade hipersônica nem se ele seria capaz de voar por três horas a essa velocidade.

O projeto do caça hipersônico foi apresentado no início do mês durante o fórum do Instituto Americano de Aeronáutica e Astronáutica, realizado em Orlando, nos Estados Unidos. “Recentemente, desenvolvemos o design conceitual de uma aeronave de demonstração hipersônica. Uma versão operacional do conceito de aeronave poderia ser usada para inteligência, vigilância, reconhecimento e missões de ataque”, afirma a empresa.

A Boeing tem investido em novas tecnologias para desenvolver o caça hipersônico, especialmente em questões aerodinâmicas e no funcionamento dos motores para conseguir atingir velocidades cinco vezes maior que a do som. Na parte aerodinâmica, por exemplo, as principais mudança estão no desenho da fuselagem, das asas e da cauda do avião.

“Vemos a forma da fuselagem sendo projetada com ângulos de baixo impacto. As asas e as caudas terão bordas de ataque que avançarão em direção ao trecho traseiro do veículo em ângulos relativamente grandes. Ambas as características reduzem o arrasto aerodinâmico [resistência do ar]”, diz a empresa.

Motores inovadores

A Boeing também trabalha em um sistema de funcionamento dos motores chamado de ciclo combinado baseado em turbina (TBCC). O novo conceito abandona a propulsão baseada em foguete para utilizar motores scramjet, que permite funcionar em velocidades hipersônicas.

Com isso, no estágio inicial do voo, os motores usariam o sistema tradicional de turbinas. Após atingir a velocidade do som, o avião adotaria um sistema que trabalha com o ar a velocidades supersônicas dentro do motor do avião. Na desaceleração para o pouso, o caça voltaria a usar o sistema tradicional de turbinas.

A Boeing também trabalha em um sistema de funcionamento dos motores chamado de ciclo combinado baseado em turbina (TBCC). O novo conceito abandona a propulsão baseada em foguete para utilizar motores scramjet, que permite funcionar em velocidades hipersônicas.

Com isso, no estágio inicial do voo, os motores usariam o sistema tradicional de turbinas. Após atingir a velocidade do som, o avião adotaria um sistema que trabalha com o ar a velocidades supersônicas dentro do motor do avião. Na desaceleração para o pouso, o caça voltaria a usar o sistema tradicional de turbinas.

Ainda não há dinheiro disponível.

Uma imagem divulgada pela própria Boeing mostra como deverá ser o novo avião. No entanto, apesar dos avanços nas pesquisas, ainda não há recursos disponíveis dentro da empresa para a criação do caça hipersônico. A empresa ainda estuda novas tecnologias que poderão ser agregadas ao projeto.

“Um demonstrador de avião hipersônico reutilizável não está sendo construído atualmente e não há planos concretos ou recursos alocados para fazê-lo, mas continuamos buscando mais oportunidades de pesquisa junto a agências parceiras a fim de avançar no design e nas tecnologias que darão origem a um eventual demonstrador de aeronave hipersônica reutilizável. Seria prematuro especular quando um veículo de voo hipersônico operacional poderá se uma tornar realidade, mas é justo dizer que poderia ser viável dentro de 10 a 20 anos”, diz a Boeing.

A Boeing já teve um avião experimental não-tripulado que superou em 5,1 vezes a velocidade do som (6.242 km/h). O X-51 Waverider foi lançado de um caça bombardeiro B-52 Stratofortress e voou a essa velocidade por 3,5 minutos antes de cair no mar já sem combustível.

Como seria o mundo se a Terra fosse realmente plana, segundo a ciência… – Veja mais

A Terra é redonda ou plana?

A Terra é redonda ou plana?

Conceito de uma Terra plana com o Polo Norte no centro e a Antártida nas periferias é defendido por alguns.

Essa pergunta pode parecer ridícula para muitas pessoas, e sua resposta, óbvia. Ou talvez não?

A teoria de que a Terra é plana ganhou adeptos nos últimos anos, com a primeira conferência de “terraplanistas” realizada no fim do ano passado nos Estados Unidos. Há inclusive celebridades de Hollywood que a defendem. E, apesar de haver muitas provas (gráficas e físicas) de que o nosso planeta é redondo, o debate ressurge com frequência.

Por isso, a fim de acabar com as especulações, o geofísico James Davis, da Universidade de Columbia, em Nova York, membro do Observatório Terrestre Lamont-Doherty, idealizou um cenário de como seria a Terra se ela fosse de fato plana, tendo como base pressupostos dos terraplanistas.

1. A gravidade

Quem acredita que a Terra tem a forma de um disco parte do pressuposto de que a gravidade exerceria sua força diretamente para baixo, mas não é assim que funciona esse fenômeno. Davis esclarece que, segundo o que sabemos sobre a força gravitacional, ela puxa tudo para o centro.

Então, quanto mais longe do centro do disco, mais a gravidade puxaria as coisas horizontalmente. Isso teria efeitos estranhos, como sugar toda a água do mundo para o centro do disco, e fazer com que árvores e outras plantas crescessem diagonalmente, já que elas se desenvolvem na direção oposta à da gravidade.

Caminhar também seria uma tarefa complicada, com uma força que nos empurraria rumo ao centro quando tentássemos chegar à borda do disco. Seria como subir uma encosta muito inclinada.

2. O Sistema Solar

O modelo de Sistema Solar que prevalece hoje situa o Sol no centro deste conjunto, onde a Terra circula ao redor da estrela – graças a uma órbita que nos aproxima e nos distancia desse astro de acordo com a época do ano.

Os terraplanistas colocam a Terra no centro do Universo, onde o Sol opera como uma lâmpada que irradia luz e calor de lado a outro do planeta, mas não falam de uma órbita.

Davis acredita que, sem essa órbita ou a força gravitacional do Sol, nada impediria que o planeta fosse expelido para fora do Sistema Solar.

Uma Terra plana teria outra incongruência. Se o Sol e a Lua circulam sobre o planeta, seria possível haver dias e noites, mas não as estações, eclipses e outros fenômenos astronômicos que dependem do formato esférico da Terra.

Além disso, o Sol teria que ser menor do que a Terra, caso contrário poderia nos queimar ou cair sobre nós. Davis destaca, no entanto, haver medições suficientes que mostram que o Sol tem 100 vezes o diâmetro da Terra.

3. Campo magnético

As leis da física que conhecemos hoje em dia estabelecem que o núcleo da Terra gera seu campo magnético.

Em um planeta plano, segundo os defensores desse modelo, esse campo não existe. Sendo assim, diz o especialista, não haveria uma atmosfera, o que faria com que o ar e os mares fossem parar no espaço. É o que ocorreu em Marte quando o planeta perdeu seu campo magnético.

4. Atividade tectônica

O movimento das placas tectônicas e os movimentos sísmicos são explicados apenas com uma Terra redonda. “Só em uma esfera as placas se encaixam de uma forma sensata”, diz Davis.

Os movimentos das placas de um lado da Terra afetam os movimentos no outro lado. As áreas da Terra que criam formações para cima da crosta terrestre, como a Cordilheira dos Andes, são contrabalanceadas por outras que formam depressões, como os vales.

Nada disso seria explicado adequadamente com uma Terra plana. Não seria possível entender por que existem montanhas ou terremotos.

Também teria de haver uma explicação para o que acontece com as placas na borda do mundo. Poderíamos imaginar que elas cairiam, mas os terraplanistas defendem que existe um “muro de gelo” na borda, criado pela Antártida, algo muito difícil de acreditar, opina Davis.

Para concluir, diz o especialista, se vivêssemos em uma Terra plana, não teríamos nenhuma dúvida disso, porque tudo seria muito diferente de como conhecemos hoje.

Cientistas confirmam um novo estado da matéria: os cristais do tempo

Pesquisadores da Universidade da Califórnia, nos Estados Unidos, conseguiram fazer um modelo para reproduzir um novo tipo de matéria, os chamados cristais do tempo.

A existência desse novo estado foi proposta pelo Nobel de Física de 2012, Frank Wilczek. A ideia do cientista causou muito debate no meio científico e agora foi reafirmada com o modelo no artigo publicado no Physical Review Letters.

 Os diamantes (foto) têm a estrutura normal de cristais, diferente dos cristais do tempo

Cientistas confirmam um novo estado da matéria: os cristais do tempo

Com base no modelo, duas equipes independentes, uma da Universidade de Maryland e uma da Universidade de Harvard, criaram seus próprios cristais do tempo. Quando esses estudos forem avaliados e publicados, podemos ter a prova final de que os cristais do tempo existem.

“É um novo estado da matéria. Também é muito legal porque é um dos primeiro exemplos de matéria de não-equilíbrio”, diz Norman Yao, coordenador da pesquisa da Universidade da Califórnia e participante dos grupos de pesquisa das outras universidades.

Como é?

Teoricamente, quando um material está no estado de gasto zero energia, é impossível haver movimento. Mas Wilczek previu que no caso dos cristais do tempo isso seria diferente.

Os cristais normais têm uma estrutura atômica que se repete no espaço –como a estrutura de carbono de um diamante. Um rubi ou um diamante não se movem porque estão em equilíbrio quando estão parados, em seu estado zero.

Já os cristais do tempo têm uma estrutura que se repete tanto no espaço quanto no tempo. Eles seriam como uma gelatina. Quando você toca, ela treme. Só que nesse caso, ela não precisaria ser tocada para ficar tremendo. O estado de zero gasto de energia desse cristal é justamente ficar se movendo.

Assim, os cristais do tempo são uma nova forma de matéria, a matéria do não-equilíbrio, pois ela não consegue ficar parada.  “No último meio século, exploramos a matéria do equilíbrio, como metais e isolantes. Agora começamos a explorar uma paisagem totalmente nova da matéria do não-equilíbrio”, conclui Yao.

A existência deles pode trazer novos entendimentos sobre o mundo ao nosso redor e também de novas tecnologias como computação quântica.

Uma Breve História da (teoria da) Luz

Uma Breve História da (teoria da) Luz

Uma Breve História da (teoria da) Luz

A natureza desse fenômeno ao mesmo tempo tão cotidiano e tão misterioso

– a luz- responsável entre outras coisas pela visão, é tão complexa que somente nos últimos dois séculos obtivemos um modelo realmente preciso com bases experimentais acerca dela; o assunto levou mais tempo que a próxima Mecânica Clássica para ser finalmente desenvolvido satisfatoriamente, não obstante o próprio Newton ter se debruçado com esmero sobre ele (tendo inclusive publicado uma obra intitulada “Óptica” da qual muito se orgulhava) sem no entanto alcançar neste campo o mesmo resultado definitivo e completo que havia alcançado com o estudo do movimento dos corpos nos Principia. Logo no início do séc. XIX, em 1801 o físico Thomas Young havia confirmado que a luz realmente se comportava como uma onda, favorecendo assim a teoria ondulatória da luz a qual era rejeitada inclusive por Newton em favor da teoria corpuscular.

A teoria corpuscular da luz possui raízes antigas remontando à Demócrito na antiga Grécia, o qual supunha que tudo era composto de átomos (seu modelo nada tinha da sofisticação alcançada milênios depois por John Dalton, Rutherford, Bohr etc.

Mas tinha a essência do conceito: eram partículas pequeninas, indivisíveis e indestrutíveis), logo a luz também era composta por esses minúsculos grãos.
Pitágoras e Platão também adotaram esta teoria corpuscular imaginando raios de luz como feixes de partículas.

Antes que fosse confirmada a hipótese ondulatória também contava com célebres defensores. Sua origem parece remeter também à Grécia antiga: Aristóteles supôs que a luz provavelmente se comportava como o som (já era sabido na época que era um resultado de vibrações do ar).
Para tanto imaginou um meio que ela fizesse vibrar, pois imaginava-se que, à exemplo das ondas de água ou do som (ondas no ar) era necessário um MEIO no qual se causasse um distúrbio: não se imaginava que uma onda pudesse ser algo em si, independente de outra coisa . Aristóteles supôs então este meio e denominou-o “diáfano”. Esta ideia da luz como uma perturbação em um meio persistiu através de toda idade média e mesmo depois dela com a ideia de um “éter” permeando o espaço aparentemente vazio. Entre os adeptos modernos mais célebres da teoria ondulatória se encontravam Christian Huygens (para quem a luz era a vibração em um meio sutil que chamava “éter luminífero”) e Robert Hooke, o “arqui-inimigo” de Isaac Newton (o qual fez de tudo para apaga-lo da História, inclusive fazendo sumir o único retrato pintado de Hooks que existia). A experiência de Young ,conhecida com o “experimento das duas fendas” (onde um feixe luminoso passa por duas aberturas ou fendas) vaio a provar sem sombra de dúvida, pelo padrão de interferência obtido, que a luz era um fenômeno ondulante.

Maxwell, cerca de meio século depois deu outro passo importante ao postular a existência de ondas eletromagnéticas e descobrir que a luz, a mesma energia responsável pelo fenômeno da visão, é também uma onda de natureza eletromagnética deslocando-se à velocidade c = 300.10³Km/s.

A definição de Maxwell diz que “a luz é a energia que se propaga através de ondas eletromagnéticas”. Também supôs com acerto que possivelmente deviam haver várias frequências que não seriam passíveis de serem percebidas por nós, o que foi indubitavelmente demonstrado quando Heinrich Hertz finalmente produziu ondas na frequência de rádio em 1887. Depois disso, pouco mais de um século após Young fazer a luz atravessar duas fendas, Einstein venceu o Nobel de Física ao explicar o efeito fotoelétrico* e comprovar exatamente o contrário de Young e Maxwell: que a luz é, realmente, composta por feixes de fótons, que são bem como os átomos de Demócrito: grãozinhos bem pequenos de matéria. Ou seja, Einstein trouxe à baila novamente a teoria corpuscular da luz, a qual já havia sido descartada definitivamente (supunha-se).
Neste ponto, qualquer pessoa que não conheça ainda o final da estória deve, ou deveria estar pelo menos, um bocado confusa. Afinal a luz é onda ou é corpúsculo? Como é possível a experiência de um individuo provar uma coisa e outro ganhar um Nobel provando exatamente o contrário?
A resposta é mais estranha do que se imagina: de fato as duas contradições foram provadas, mas ambas as teorias estão certas.

A luz se comporta tanto de uma forma como de outra. Ela simplesmente não tem uma natureza definida. A isso os físicos denominaram tecnicamente “dualidade onda-partícula”, conceito que desde então ocupa posição extremamente relevante na teoria quântica.

A “dualidade onda-partícula” passou a ser estendida para todo o Universo físico desde que Louis de Broglie, um dos principais formuladores dos primórdios da física quântica, formulou a teoria das “ondas de matéria” e provou que não só os fótons, mas todas as partículas tem um comprimento de onda associado à elas.

Qual a mais alta temperatura possível?

Sabemos que existe uma temperatura mínima que um corpo pode atingir, o chamado zero absoluto (-273,15°C), em que suas partículas param de se movimentar e de emitir energia. Contudo, fica uma dúvida: será que existe uma temperatura máxima possível? Uma espécie de “calor absoluto”, tão quente que não teria como esquentar mais?

Para começo de conversa, a ideia de que uma temperatura é “alta” é relativa. No corpo humano, cuja temperatura média é de 37°C, uma febre de 42°C pode ser fatal. No Vale da Morte, deserto localizado no leste da Califórnia (EUA), foi registrada a temperatura atmosférica mais alta já atingida na Terra: 54°C.

Qual a mais alta temperatura possível?

Qual a mais alta temperatura possível?

Acha “quente”? Para se preparar uma xícara de café, recomenda-se usar água a 82°C, temperatura abaixo da ideal para se assar um bolo (100°C), por exemplo.

Fugindo do dia-a-dia, podemos encontrar temperaturas mais intimidadoras: lava que acabou de sair de um vulcão pode atingir cerca de 1090°C, o que não é nada perto do calor da superfície do sol (5,5 mil °C). Em comparação com seu núcleo, porém, a superfície do sol chega a ser “fria”: ele atinge 15 milhões °C.

Quando um objeto alcança temperaturas absurdas como a do centro do sol, libera uma imensa quantidade de energia. Se aquecêssemos a cabeça de um alfinete a essa temperatura, a energia emitida mataria qualquer um em um raio de 160 mil km. A temperaturas como essa, a matéria atinge seu quarto estado físico: o plasma, em que os elétrons começam a circular dispersos de seus núcleos.

Mais quente que o sol (literalmente)

O sol não está nem perto de ser o objeto mais quente do universo: o núcleo de uma estrela oito vezes maior que ele alcançaria a temperatura de 3 bilhões °C no momento de seu colapso.

Há uma estrela, chamada WR104, cuja massa é 25 vezes maior que a do sol. Quando ela “morrer”, irá emitir uma energia maior do que a que o sol será capaz de gerar durante toda a sua existência. Felizmente, a WR104 está bem longe, a cerca de 8 mil anos-luz da Terra.

Mesmo na Terra, aliás, já foram geradas temperaturas mais altas que a do sol: na Suécia, cientistas geraram temperaturas de 1 x 10¹⁸ °C usando colisores de partículas. As experiências foram seguras, contudo, porque envolviam poucas partículas e a temperatura permanecia tão alta apenas por uma fração de segundo.

Temperatura de Planck: o limite?

Qualquer objeto cuja temperatura esteja acima do zero absoluto emite algum tipo de radiação eletromagnética – para que a radiação emitida se torne visível ao olho humano, é preciso que a temperatura esteja acima do Ponto de Draper (525°C).

Há uma relação entre a temperatura de um corpo e o comprimento de onda da radiação emitida: quanto mais quente o objeto, menor o comprimento de onda (ou, se preferir, maior sua frequência).

Se um corpo atingisse a temperatura de 141 x 10³⁰ °C (a chamada Temperatura de Planck), a radiação emitida teria o menor comprimento de onda possível (161 x 10⁻²⁶ nanômetros), a Distância de Planck. De acordo com a física quântica, essa é a menor distância possível em nosso universo. Se aumentássemos a temperatura (e, com isso, diminuíssemos o comprimento de onda), não se sabe o que aconteceria.

Teoricamente, não há limite para a quantidade de energia que podemos adicionar a um corpo. Se ultrapassássemos a Temperatura de Planck, é possível que um buraco negro se formasse – um buraco negro formado a partir de energia, inclusive, tem um nome especial: Kugoblitz.

Para encerrar, uma pequena curiosidade física: embora o sol emita uma grande quantidade de energia, não é tanta, levando em conta sua massa total. Proporcionalmente, um ser humano emite mais calor do que o sol (lembre-se disso quando estiver com frio).

Teoria quântica vence Einstein mais uma vez em estudo holandês

Em um estudo de referência, cientistas da Universidade de Tecnologia de Delft, na Holanda, relataram ter feito um experimento que, segundo eles, comprova uma das asserções mais fundamentais da teoria quântica –de que objetos separados por uma grande distância podem afetar instantaneamente o comportamento um do outro.

A descoberta é mais um golpe para um dos princípios fundamentais da física clássica conhecido como “localidade”, que afirma que um objeto é influenciado diretamente apenas pelo seu entorno imediato.

Teoria quântica vence Einstein mais uma vez em estudo holandês

Teoria quântica vence Einstein mais uma vez em estudo holandês

O estudo de Delft, publicado na quarta-feira (21) na revista Nature, dá mais credibilidade a uma ideia que Albert Einstein rejeitou notoriamente. Ele dizia que a teoria quântica exigia uma “ação fantasmagórica à distância”, e ele se recusava a aceitar a noção de que o universo podia se comportar de uma forma tão estranha e aparentemente aleatória.

O novo experimento, realizado por um grupo liderado por Ronald Hanson, um físico do Instituto Kavli de Nanociência da universidade holandesa, em conjunto com cientistas da Espanha e Inglaterra, é a evidência mais forte para apoiar as asserções mais fundamentais da teoria da mecânica quântica sobre a existência de um mundo estranho formado por um tecido de partículas subatômicas em que a matéria só toma forma depois que é observada e que o tempo corre para trás ou para frente.

Os pesquisadores descreveram sua experiência como um “teste livre de falhas do teorema de Bell” em referência a um experimento proposto em 1964 pelo físico John Stewart Bell como forma de provar que a “ação fantasmagórica à distância” é real.

“Estes testes vêm sendo feitos desde o final dos anos 70, mas sempre de uma forma que exige pressupostos adicionais”, disse Hanson. “Agora confirmamos que a ação fantasmagórica à distância existe.”

Os cientistas dizem que já descartaram todas as chamadas variáveis ocultas possíveis que ofereceriam explicações para esse “emaranhamento” de longa distância com base nas leis da física clássica.

Os pesquisadores de Delft conseguiram emaranhar dois elétrons separados por uma distância de 1,3 km e, em seguida, compartilhar informações entre eles. Os físicos usam o termo “emaranhamento” para se referir a pares de partículas que são gerados de tal maneira que elas não podem ser descritas separadamente. Os cientistas colocaram dois diamantes em extremos opostos do campus da Universidade de Delft, a 1,3 km de distância um do outro.

Cada diamante continha uma pequena armadilha para elétrons isolados, que têm uma propriedade magnética chamada “spin”. Pulsos de laser e micro-ondas foram utilizados então para emaranhar os elétrons e medir seu “spin”.

A distância –com detectores instalados em lados opostos do campus– assegurou que a informação não poderia ser trocada por meios convencionais dentro do tempo necessário para fazer a medição.

“Acho que esta é uma experiência bela e simples e vai ajudar todo o campo a avançar”, disse David Kaiser, físico do MIT (Instituto de Tecnologia de Massachusetts), que não esteve envolvido no estudo. No entanto, Kaiser, que faz parte de outro grupo de físicos que está se preparando para realizar um experimento ainda mais ambicioso no ano que vem, medindo a luz capturada nos confins do universo, também acha que nem toda centelha de dúvida foi eliminada pelo experimento holandês.

Os testes acontecem num mundo peculiar que desafia a compreensão. De acordo com a mecânica quântica, as partículas só assumem as propriedades da forma quando são medidas ou observadas de alguma maneira. Até então, elas podem existir simultaneamente em dois ou mais lugares. Uma vez medidas, no entanto, elas se encaixam numa realidade mais clássica, que existe num só lugar.

De fato, o experimento não é apenas uma defesa da teoria exótica da mecânica quântica, é um passo em direção a uma aplicação prática conhecida como “internet quântica”. Atualmente, a segurança da internet e a infraestrutura do comércio eletrônico estão se fragilizando diante de computadores poderosos que representam um problema para as tecnologias de criptografia baseadas na capacidade de fatorar números grandes e outras estratégias semelhantes.

Pesquisadores como Hanson imaginam uma rede de comunicação quântica formada a partir de uma cadeia de partículas emaranhadas circundando todo o globo. Essa rede permitiria compartilhar chaves criptográficas de forma segura, e saber sobre as tentativas de espionagem com certeza absoluta.

Para alguns físicos, embora o novo experimento afirme ser “livre de falhas”, a questão ainda não está totalmente resolvida.

“O experimento eliminou duas das três principais falhas, mas duas em cada três não são três”, disse Kaiser. “Acredito plenamente que a mecânica quântica é a descrição correta da natureza. Mas afirmar isso de forma categórica, francamente, ainda não chegamos lá.”

Criado mapa interativo da Teoria de Tudo

Desde o início da civilização”, escreveu Stephen Hawking em seu best-seller internacional Uma Breve História do Tempo, “as pessoas não têm se contentado em testemunhar eventos desconectados e inexplicáveis. Elas têm desejado uma compreensão da ordem subjacente no mundo. ”

Mapa interativo liga toda a física conhecida. Créditos: Quanta Magazine

Mapa interativo liga toda a física conhecida. Créditos: Quanta Magazine

Na busca de uma descrição coerente, unificada de toda a natureza — uma “teoria do tudo” — os físicos descobriram raízes ligando cada vez mais fenômenos díspares. Com a lei da gravitação Universal, Isaac Newton ligou a queda de uma maçã às órbitas dos planetas. Albert Einstein, em sua teoria da relatividade, teceu o espaço e o tempo em uma única malha e mostrou como as maçãs e planetas caem ao longo de curvas desse tecido. E hoje, todas as conhecidas partículas elementares conectam-se ordenadamente em uma estrutura matemática chamada o modelo padrão. Mas nossas teorias físicas permanecem crivadas com desuniões, buracos e inconsistências. Estas são questões profundas que devem ser respondidas em perseguição a teoria do tudo.

Um novo mapa da fronteira da física fundamental, construído pelo desenvolvedor interativo Emily Fuhrman da Quanta Magazine, faz questionamentos de peso mais ou menos de acordo com a sua importância no avanço do campo. Parecia natural para dar maior peso para a busca de uma teoria da gravidade quântica, que abarcaria a relatividade geral e a mecânica quântica, num quadro único. Em seu trabalho do dia-a-dia, porém, muitos físicos concentram mais no enraizamento da matéria escura, resolvendo o problema da hierarquia do Modelo Padrão, e ponderando os acontecimentos em buracos negros, esses engolidores misteriosos de espaço e tempo. Para cada questão, o mapa apresenta várias soluções propostas. As relações entre estas propostas formam uma rede de idéias.

Alguns dos principais temas dispostos no mapa são: