Category Archives: Relatividade

Com participação de brasileiro, cientistas simulam buraco negro

O físico Maurício Richartz, professor da Universidade Federal do ABC (UFABC), é um dos autores do artigo, produzido pelo grupo de Silke Weinfurtner

Com participação de brasileiro, cientistas simulam buraco negro

Com participação de brasileiro, cientistas simulam buraco negro

Certos fenômenos que ocorrem em buracos negros, mas não podem ser observados diretamente nas investigações astronômicas, podem ser estudados por meio de simulações em laboratório. Isso se deve a uma analogia peculiar entre processos característicos de buracos negros e processos hidrodinâmicos. O denominador comum de uns e outros é o fato de as propagações de ondas se darem de forma bastante similar.

Essa possibilidade é explorada em um novo artigo publicado na Physical Review Letters. O físico Maurício Richartz, professor da Universidade Federal do ABC (UFABC), é um dos autores do artigo, produzido pelo grupo de Silke Weinfurtner, da School of Mathematical Sciences da University of Nottingham, no Reino Unido. O trabalho teve apoio da FAPESP por meio do Projeto Temático “Física e geometria do espaço-tempo”, coordenado por Alberto Vazquez Saa.

“Embora este estudo seja inteiramente teórico, temos feito também simulações experimentais no laboratório de Weinfurtner. O equipamento é, basicamente, um grande tanque de água, com dimensões de 3 metros por 1,5 metro. O tanque dispõe de um ralo no centro e de um aparato de bombeamento, que reintroduz a água que escoa. Isso possibilita que o sistema atinja um ponto de equilíbrio, no qual a quantidade de água que entra iguala a quantidade de água que sai. Dessa forma, conseguimos simular um buraco negro”, disse Richartz à Agência FAPESP.

O pesquisador explicou como isso é possível. “A água ganha velocidade à medida que escoa. Quanto mais próxima do ralo, mais rapidamente ela flui. Então, quando produzimos ondas na superfície da água, passamos a ter duas velocidades importantes: a velocidade de propagação das ondas na água e a velocidade de escoamento da água como um todo”, disse.

“Longe do ralo a velocidade das ondas é muito maior do que a velocidade do fluido. Por isso, as ondas podem se propagar em qualquer direção. Perto do ralo, porém, a situação muda: a velocidade do fluido torna-se muito maior do que a velocidade das ondas. E isso faz com que a onda seja arrastada pelo fluido, mesmo que ela se propague em sentido contrário. Dessa forma, é possível produzir, em laboratório, um simulacro do buraco negro”, prosseguiu.

No buraco negro astrofísico real, a atração gravitacional captura a matéria e impede o escape de qualquer tipo de onda – mesmo das ondas luminosas. No simulacro hidrodinâmico, são as ondas na superfície do fluido que não conseguem escapar do vórtice que se forma.

Em 1981, o físico canadense William Unruh descobriu que a similaridade dos dois processos, o do buraco negro e o hidrodinâmico, constitui mais do que uma simples analogia. De fato, feitas algumas simplificações, as equações que descrevem a propagação de uma onda nas vizinhanças do buraco negro tornam-se rigorosamente iguais às equações que descrevem a propagação da onda na água que escoa pelo ralo.

É isso que legitima investigar, no processo hidrodinâmico, fenômenos característicos de buracos negros. No novo estudo, Richartz e colaboradores estudaram o relaxamento de um simulacro de buraco negro hidrodinâmico fora do equilíbrio, levando em conta fatores que haviam sido ignorados até então. O fenômeno estudado é, em alguns aspectos, semelhante ao processo de relaxamento de um buraco negro astrofísico real que emite ondas gravitacionais após ser criado pela colisão de dois outros buracos negros.

“Uma análise cuidadosa do espectro das ondas revela as propriedades do buraco negro, como o momento angular e a massa. Em sistemas gravitacionais mais complexos, o espectro pode depender de mais parâmetros”, descreve o artigo publicado em Physical Review Letters.

Vorticidade
Um parâmetro geralmente ignorado nos modelos mais simples – e que foi considerado no estudo – é a vorticidade. Trata-se de uma grandeza empregada em mecânica dos fluidos para quantificar a rotação de regiões específicas do fluido em movimento.

Se a vorticidade é nula, a região simplesmente acompanha o movimento do fluido. Porém, se a vorticidade não é nula, além de acompanhar o fluxo, ela também rotaciona em torno de seu próprio centro de massa.

“Nos modelos mais simples, geralmente se assume que a vorticidade no fluido seja igual a zero. Isso é uma boa aproximação para regiões do fluido situadas longe do vórtice. Mas, para regiões próximas do ralo, já não é uma aproximação tão boa, porque, neste caso, a vorticidade se torna cada vez mais importante. Então, uma das coisas que fizemos em nosso estudo foi incorporar a vorticidade”, disse Richartz.

Os pesquisadores buscaram entender como a vorticidade influencia o amortecimento das ondas durante a propagação. Quando um buraco negro real é perturbado, ele emite ondas gravitacionais que oscilam com uma certa frequência. A amplitude das ondas decai exponencialmente com o tempo. O conjunto de ressonâncias amortecidas que descreve como o sistema excitado é levado de volta ao equilíbrio é caracterizado, tecnicamente, por um espectro de modos quase-normais de oscilação.

“Em nosso trabalho, investigamos como a vorticidade influencia os modos quase-normais no análogo hidrodinâmico do buraco negro. E nosso principal resultado foi o fato de termos encontrado algumas oscilações que decaem muito lentamente, isto é, que permanecem ativas por muito tempo, e que ficam localizadas espacialmente nas proximidades do ralo. Essas oscilações já não constituem modos quase-normais, mas um outro padrão denominado estados quase-ligados”, disse Richartz.

Um desenvolvimento futuro da pesquisa é produzir experimentalmente esses estados quase-ligados em laboratório.

Novos estudos da física querem derrubar teorias de Einstein.

p>Albert Einstein já morreu? Sim. O velho gênio deu o suspiro final e murmurou, em alemão, suas últimas palavras indecifráveis no dia 18 de abril de 1955. Porém, atualmente, ele está m

Novos estudos da física querem derrubar teorias de Einstein.

orrendo pela segunda vez; isso se você acreditar na enxurrada de artigos e trabalhos lamentando a situação da física contemporânea.

Esqueça a recente e surpreendente descoberta das ondas gravitacionais, ondulações no espaço-tempo que Einstein já previra há um século e que indicam que o universo está coberto de buracos negros despedaçando e engolindo estrelas. Não, agora outro legado controverso de Einstein, algo muito mais profundo do que a gravidade ou a teoria quântica, está em jogo.

Mais do que qualquer um, foi Einstein quem estabeleceu o propósito da ciência moderna: a busca por uma teoria final do tudo, uma teoria unificada, como ele diria, que explicasse por que não haveria outra opção de constituição do universo a não ser esta em que vivemos. Ou, como ele colocou: “O que me interessa é saber se Deus teve alguma opção na criação do mundo.”

Se Albert lesse o título do artigo publicado no último verão na revista científica on-line “Quanta”, iria revirar no túmulo. Robbert Dijkgraaf, diretor do Instituto de Estudos Avançados, onde Einstein passou seus últimos 22 anos, escreve: “Não existem leis da física.” O que há é um espantoso cenário de possibilidades, quase infinitas, uma rede sutilmente conectada de versões da realidade. Há um universo para cada sonho bom ou ruim que você já teve, cada um com seu próprio conjunto de partículas, forças, leis e dimensões, ele afirma no artigo.

Esse cenário, também conhecido como multiverso, é o que vislumbram os estudiosos da teoria das cordas, que resolveram passar por cima do legado de Einstein na mais recente manifestação de criatividade científica. A teoria das cordas une a gravidade, que curva o cosmo, com a mecânica quântica, que descreve a aleatoriedade, ao estabelecer que as partes constituintes da natureza são como pequenas cordas de energia vibrando em 11 dimensões.

A teoria foi descrita como uma parte da física do século 21 que caiu no século 20 por acidente – e que talvez necessite de matemáticos do século 22 para poder ser compreendida. O resultado é um labirinto matemático com 10^500 soluções, cada uma representando um universo em potencial. A princípio, um desses universos seria o nosso, mas ninguém sabe qual, pois a matemática e a física são terrivelmente complexas. Ou como se lê no artigo de Dijkgraaf: “Se nosso mundo é um entre muitos, como lidar com as alternativas? O ponto de vista atual pode ser entendido como o extremo oposto do sonho de Einstein de um único cosmo.”

Questionado em Princeton, Dijkgraaf disse que o título do artigo, o qual ele não escreveu, talvez tenha sido um exagero e que provavelmente exista um princípio fundamental, mas, o que quer que ele seja, está por trás da teoria das cordas. No entanto, ninguém, nem mesmo os fundadores da teoria das cordas, consegue dizer o que é. Cientistas foram levados a essa ideia após descobrirem, há duas décadas, que uma força misteriosa, a energia escura, está acelerando a expansão do universo, fazendo com que as galáxias se distanciem umas das outras cada vez mais rapidamente através do tempo cósmico.

Essa energia escura carrega todas as características de um fator de correção, chamado constante cosmológica, que Einstein incluiu em suas equações um século atrás para depois rejeitá-lo como uma gafe. Mas a quantidade dessa energia escura é menor do que o valor previsto da constante cosmológica por uma razão de 10^60. Físicos só conseguem explicar a discrepância assumindo que o valor da constante de Einstein é aleatório em todos os universos em potencial; nós vivemos em um onde existe a quantidade correta de energia escura que possibilita a formação de estrelas e galáxias. Resumindo, nós moramos onde dá para morar.

Alguns físicos creem que o cenário é uma extensão lógica da revolução copernicana. Assim como a Terra não é o centro do sistema solar nem o único planeta, nosso universo também não é o único. Outros acreditam que a ideia de outros universos é um absurdo epistemológico, uma especulação sem saída, impossível de ser provada e uma traição do sonho einsteiniano de um único cosmo. Mesmo em nosso universo uno, os seguidores de Einstein estão enfrentando problemas, o caminho até o conhecimento definitivo está bloqueado ou talvez não exista.

A descoberta, após longa busca, em 2012, do bóson de Higgs confirmou a última parte pendente de um sistema matemático complexo conhecido como Modelo Padrão da Física de Partículas, o qual detalha todas as formas de matéria e energia que podem ser medidas em um laboratório. O Modelo Padrão explica, por exemplo, por que o computador liga e por que uma gardênia tem um cheiro tão doce.

Contudo, o modelo funciona bem demais. Físicos que estudam partículas filtraram os restos de trilhões de colisões subatômicas realizadas no Grande Colisor de Hádrons, a imensa máquina em que se descobriu o Bóson de Higgs. Até agora, eles conseguiram confirmar que o Higgs se comporta da maneira prevista pelo Modelo Padrão.

Apesar de ser uma grande conquista intelectual, foi incapaz de revelar alguma discrepância que pudesse levar a uma teoria mais abrangente. Mais especificamente, os pesquisadores não acharam pistas de um fenômeno que eles tanto buscam, a supersimetria, que faria a conexão entre as forças físicas individuais e forneceria toda uma nova gama de partículas elementares, incluindo, talvez, o que forma a matéria escura.

A supersimetria, no entanto, pode ter sido sempre uma ilusão, segundo Sabine Hossenfelder, teórica do Instituto de Estudos Avançados de Frankfurt. Ela se destacou no ano passado como uma das críticas mais contundentes da física moderna com seu novo e provocador livro, “Lost in Math: How Beauty Leads Physics Astray”. Ela argumenta que, ao exaltar a elegância matemática, físicos têm perdido o rumo. “Eles achavam que a Mãe Natureza era elegante, simples e generosa em dar pistas; eles acreditavam poder escutar seus sussurros enquanto conversavam entre si”, escreve ela. Físicos que estudam partículas respondem que eles apenas têm seguido princípios consagrados e de sucesso comprovado. Eles perseguiram o Bóson de Higgs por meio século e quase desistiram até a natureza finalmente cuspi-lo para eles.

Enquanto isso, os cosmólogos, um grupo sabidamente rabugento, chegaram ao próprio Modelo Padrão de Partículas para o nosso universo em particular. De acordo com eles, átomos — aquilo de que você, eu e as estrelas somos feitos– representam apenas 5% do peso do cosmos. A matéria escura, da qual nada conhecemos a não ser que sua gravidade coletiva esculpe e segura as galáxias unidas, representaria 25%. Os 70% restantes seriam de energia escura, que estaria afastando tudo; outro assunto do qual não sabemos nada. Nós só tomamos conhecimento dessa “parte escura” por causa do efeito que a gravidade tem sobre o universo luminoso, o movimento das estrelas e galáxias. Ora, uma teoria que deixa 95% do universo sem identificação dificilmente é uma indicação de que a ciência encerrou seu trabalho.

Alguns astronautas acreditam que, talvez, não tenhamos compreendido a gravidade no fim das contas. “Minha preocupação é que podemos estar endeusando Einstein de forma excessiva”, confessou Stacy McGaugh, astrônomo da Universidade Case Western Reserve, ao Gizmodo em junho.

O melhor presente para os cientistas neste Natal é uma nova teoria física que possa tirá-los desse impasse dos modelos padrões e fornecer novas pistas para nossa existência. Talvez esse avanço venha de finalmente descobrir o que é a matéria escura ou do Grande Colisor de Hádrons, que continuará provocando a colisão de partículas subatômicas pelos próximos 20 anos em busca de novas forças e fenômenos. Cada colisão registrada é mais um passo em direção ao desconhecido.

Por ora, o universo pode ter 11 dimensões ou ser um sonho de alguém. A vida pode ter começado em Marte ou em uma fonte hidrotermal, ou, talvez, sejamos todos bits de uma simulação computadorizada controlada por alguém. Descobrir quem somos e como a natureza se organiza é uma das buscas fundamentais do ser humano, como a arte ou a música. E continuará sendo.

Hossenfelder, apesar de todo o ceticismo, conclui seu livro de forma esperançosa ao profetizar: “A próxima grande descoberta ocorrerá neste século, e será linda”, conclui.

Cientistas encontram luz misteriosa no espaço e não sabem identificá-la

Cientistas encontram luz misteriosa no espaço e não sabem identificá-la

Irradiada de estrela de nêutrons, iluminação pode ser um disco de poeira ou a presença de um vento energético

Cientistas encontram luz misteriosa no espaço e não sabem identificá-la

Com o auxílio do Telescópio Espacial Hubble, da NASA, pesquisadores da Universidade Estadual da Pensilvânia, nos Estados Unidos, detectaram uma estranha luz infravermelha emergindo de uma região ao redor da estrela de nêutrons RX J0806.4-4123. Eles acreditam que isso pode indicar a existência de características nunca antes vistas.

“Essa estrela de nêutrons pertence a um grupo de sete pulsares de raios-X próximos, apelidados de ‘os Sete Magníficos’, que são mais quentes do que deveriam ser, se considerarmos suas idades e reservatórios de energia disponíveis, fornecidos pela perda de energia de rotação”, disse em comunicado Bettina Posselt, líder do estudo. “Observamos uma extensa área de emissão de infravermelho ao redor desta estrela, cujo tamanho total se traduz em cerca de 200 unidades astronômicas na distância presumida do pulsar”.

Em um artigo publicado no Astrophysical Journal, os astrônomos propõem duas explicações para a misteriosa emissão infravermelha. A primeira é que há um disco de material, possivelmente feito de poeira, cercando a estrela. “Pode haver o que é conhecido como um ‘disco de retorno’ de material que se aglutinou ao redor da estrela de nêutrons após a supernova”, explicou Posselt. “Tal disco seria composto de matéria da estrela maciça progenitora. Sua interação subsequente com a estrela de nêutrons poderia ter aquecido o pulsar e retardado sua rotação.”

Segundo a pesquisadora, se essa hipótese for confirmada, isso poderá mudar a compreensão da astronomia de como as estrelas de nêutrons evoluíram.

A segunda explicação é que há um vento energético soprando da estrela de nêutrons que interage com o gás no espaço interestelar, criando uma característica conhecida como “nebulosa do vento pulsar”. Ventos pulsares são gerados quando as partículas são aceleradas no campo elétrico que é produzido pela rápida rotação de estrelas de nêutrons com um forte campo magnético.

Estrelas de nêutrons são produzidas quando estrelas massivas chegam ao fim de suas vidas e passam por supernovas, que expelem as camadas externas de material. Se a massa da estrela que explode é insuficiente para produzir um buraco negro, a região central que sobrou entra em colapso sob a força da gravidade e é espremida a tal ponto que prótons e elétrons se combinam para formar nêutrons.

Devido à densidade extremamente alta, elas também possuem poderosos campos gravitacionais. O campo gravitacional na superfície de uma estrela de nêutrons é em torno de 200 bilhões de vezes o da Terra. As estrelas também podem girar rapidamente, até centenas de vezes por segundo. Algumas estrelas de nêutrons, como a RX J0806.4-4123, por exemplo, emitem raios intensos de radiação, parecidos com os faróis interestelares.

Esses feixes tendem a ser estudados no espectro de raios-X, raios gama e ondas de rádio, mas para as últimas pesquisas, a equipe usou a visão infravermelha do Hubble para observar RX J0806.4-4123 – que foi a primeira estrela de nêutrons na qual um sinal estendido foi visto apenas em luz infravermelha.

Conheça Hyperion, a maior estrutura espacial já descoberta.

O Hyperion tem uma massa mais de um milhão de bilhões de vezes maior que a do Sol

O Hyperion tem uma massa mais de um milhão de bilhões de vezes maior que a do Sol

Uma equipe internacional de astrônomos anunciou nesta quarta-feira a descoberta da maior estrutura já encontrada no espaço, um superaglomerado ancestral de galáxias com massa de mais de um milhão de bilhões de vezes a do Sol. Hyperion, como foi batizada, é a maior estrutura já vista nos primeiros 5 bilhões de anos do Universo.

Para compreender isto, precisamos lembrar que há um consenso no meio astronômico de que o Big Bang, ou seja, a explosão fundamental que deu origem ao Universo, ocorreu entre 13,3 bilhões e 13,9 bilhões de anos atrás.

Quando os cientistas miram telescópios para os confins do espaço, eles estão sempre observando o passado – afinal, a luz viaja a uma velocidade de 300 mil quilômetros por segundo e, ao olhar para o céu, o que se vê é a luz emitida pelos astros, sempre com algum grau de “delay”.

Por exemplo: a luz do nosso Sol, que está “perto” – em termos astronômicos -, chega a nós com um atraso de 8 minutos, que é o tempo que a luz demora para percorrer a distância.

No caso de Hyperion, ela está tão distante que a imagem obtida pelos cientistas é um retrato de mais de 11 bilhões de anos atrás – calcula-se que o superaglomerado ancestral de galáxias seja de quando o Universo era um jovem de 2,3 bilhões de anos.

Hyperion recebeu este nome por causa de suas dimensões colossoais em referência a um dos titãs da mitologia grega. Em português, é também chamado de Hiperião, Hipérion ou Hiperíon.

A descoberta

Catorze instituição científicas europeias, americanas e asiáticas fizeram parte da pesquisa que culminou na descoberta. Os trabalhos foram liderados pela astrônoma Olga Cucciati, do Instituto Nacional de Astrofísica de Bolonha, Itália, e pelo astrofísico Brian Lemaux, da Universidade da Califórnia.

Eles utilizaram um instrumento chamado VIMOS, do Very Large Telescope do Observatório de Paranal, localizado em uma montanha de 2.635 metros de altura em pleno deserto do Atacama, no norte do Chile.

O Very Large Telescope é o maior telescópio em funcionamento do mundo. Seu espelho principal tem 8,2 metros de diâmetro. Ele é operado pelo European Southern Observatory (ESO), de um centro técnico-científico que fica em Munique, na Alemanha.

“Nosso levantamento teve como alvo cerca de 10 mil galáxias do início do Universo, para observações com o VIMOS. Esse instrumento é capaz de observar a luz visível de várias centenas de galáxias simultaneamente e dispersar essa luz em suas diferentes cores como um prisma, de modo que possamos estudar a intensidade da luz em cada cor”, explicou à BBC News Brasil o astrofísico Lemaux.

A descoberta empolga os estudiosos do espaço porque permite compreender melhor os primeiros bilhões de anos pós-Big Bang.

“Como estruturas tão grandes e complexas nunca haviam sido verificadas antes a tais distâncias, não estava claro se o Universo era capaz de criar estruturas assim tão cedo em sua história”, diz Lemaux.

“Como é uma distância em que a gravidade teve pouco tempo para agir – afinal, estamos falando de apenas 2 bilhões de anos do início do Universo -, ver uma estrutura deste tipo com toda a sua complexidade é algo muito surpreendente.”

“Normalmente, estruturas desse tipo são conhecidos a distâncias mais recentes, indicando que o Universo precisou de muito mais tempo para evoluir e construir coisas tão grandes”, completa Cucciati. “Foi uma surpresa ver que algo evoluiu assim quando o Universo era relativamente jovem.”

Lemaux ressaltou que a quantidade de massa do Hyperion também é algo impressionante. “Ao somar todas as galáxias e inferir a quantidade de matéria escura dentro de Hyperion – sendo esta última a matéria que não podemos ver e que apenas age gravitacionalmente – descobrimos que a sua massa já estava próxima da dos superaglomerados atuais de galáxias”, compara.

“Um dos objetivos de nossa pesquisa é agora usar Hyperion e outras estruturas semelhantes para confrontar teorias de como a estrutura da teia cósmica, nome dado à estrutura de grande escala do universo, se forma e evolui”, comenta o cientista.

Para entender a ‘teia cósmica’

Sendo um conceito relativamente novo, a teia cósmica seria uma rede formada por todas as galáxias existentes, composta por invisíveis filamentos. De acordo com essa ideia, essas conexões formam a maior parte da matéria sideral.

Já os superaglomerados foram descobertos pela primeira vez em 1953. Trata-se de um conjunto gigantesco de galáxias – o que, segundo os cientistas, comprova que a distribuição delas no espaço não ocorre de forma uniforme.

A maior parte da comunidade astronômica hoje concorda que as galáxias estão agrupadas em conjuntos de cerca de 50 e aglomeradas em grupos de milhares.

Os superaglomerados são, portanto, conjuntos impressionantemente maiores.

Como olhar para eles é olhar para o passado, os cientistas acreditam que Hyperion “é uma estrutura que provavelmente está destinada a se tornar das maiores e mais massivas do universo atualmente”, define Lemaux.

“Em outras palavras, sistemas como ele semearam as maiores coleções de galáxias que podemos ver hoje nas proximidades da Terra, como o superaglomerado de Virgem, uma imensa estrutura que contém, entre muitos outros, o Grupo Local, o lar de nossa Via Láctea.”

O Hyperion tem uma massa mais de um milhão de bilhões de vezes maior que a do Sol

O Hyperion tem uma massa mais de um milhão de bilhões de vezes maior que a do Sol

Mapeamento

Graças ao instrumento VIMOS, os cientistas conseguiram fazer uma mapeamento tridimensional de Hyperion. A equipe descobriu, por exemplo, que a estrutura tem pelo menos sete regiões de alta densidade, conectadas por filamentos de galáxias. E ele aparenta ser diferente dos superaglomerados mais próximos da Terra.

“Enquanto os mais próximos tendem a ter uma distribuição de massa mais concentrada, com características estruturais claras, Hyperion tem a massa distribuída de maneira muito mais uniforme, em uma série de bolhas conectadas, povoadas por associações de galáxias”, afirma o astrofísico.

Os pesquisadores apontam que essa diferença se dá justamente porque os superaglomerados mais velhos tiveram bilhões e bilhões de anos para que a gravidade agisse, aproximando a matéria e, assim, criando regiões mais densas. Se este raciocínio estiver certo, Hyperion deve evoluir da mesma forma.

“Compreendê-lo e entender como ele se compara a estruturas semelhantes pode nos fornecer insights sobre como o Universo se desenvolveu no passado e evoluirá para o futuro”, diz Cucciati.

“Desenterrar este titã cósmico ajuda a descobrir a história dessas estruturas de larga escala.”

Ele conta que os cientistas também identificaram um grande reservatório de gás hidrogênio difuso “e relativamente frio” e uma região que parece conter sinais de um aglomerado de galáxias em formação.

“Essa imensa atividade e diversidade tem sido prevista a partir de alguns modelos de formação de galáxias e estruturas”, comenta. “Mas, com Hyperion, é a primeira vez que conseguimos vê-la em um sistema.”

“Embora o destino de toda estrutura seja incerto, estamos desenvolvendo modelos para prever a evolução das galáxias”, acrescenta. “Nossa esperança é, no futuro, que tais conexões nos permitam entender como as galáxias crescem, amadurecem e, eventualmente, chegam ao fim de suas vidas.”

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

     As ideias de matemáticos do século 19 deram a Einstein o que ele precisava para desenvolver a Teoria da Relatividade

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

As ideias de matemáticos do século 19 deram a Einstein o que ele precisava para desenvolver a Teoria da Relatividade

Sem as contribuições de János Bolyai, Nikolay Lobachevski e Bernhard Riemann, que descreveram o espaço curvo e as múltiplas dimensões, Albert Einstein teria enfrentado muitos obstáculos

O físico alemão Albert Einstein (1879-1955) é um gênio famoso. Sua imagem nos é familiar. Sua Teoria da Relatividade é célebre. Mas, sem as ideias de três matemáticos do século 19, essa que é a principal teoria de Einstein simplesmente não funcionaria.

A matemática é a chave para entender o universo físico. Como disse o filósofo italiano Galileu Galilei certa vez, sem o farol criado por essa ciência, estaríamos dando voltas em um labirinto escuro.

Matemáticos pioneiros deram a Einstein um mapa para navegar pelo labirinto mais escuro de todos: o tecido do Universo. János Bolyai, Nikolái Lobachevski e Bernhard Riemann criaram novas geometrias que nos levaram a mundos estranhos e flexíveis.

“Einstein era um bom matemático intuitivo e teve um pouco de problema com essas ideias, mas sabia o que queria. Quando viu o que Riemann havia feito, soube que era isso”, disse o físico teórico Roger Penrose à BBC.

Teorias de Euclides em xeque

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Durante 2.000 anos, os axiomas consagrados no grande trabalho de geometria “Os elementos”, de Euclides, foram aceitos comoverdades matemáticas absolutas e inquestionáveis.

A geometria de Euclides nos ajudou a navegar pelo mundo, construir cidades e nações, dando ao ser humano o controle sobre seu entorno.

Mas, na Europa, em meados do século 19, surgiu uma crescente inquietação em relação a algumas ideias de Euclides. Os matemáticos começaram a questionar se poderia haver outro tipo de geometria que ele não havia descrito, geometrias nas quais os axiomas de Euclides podiam ser falsos.

É difícil dizer o quão radical era essa sugestão. Tanto que um dos primeiros matemáticos a contemplar essa ideia, o alemão Carl Frederick Gauss, relutava em falar sobre o tema, apesar de ser considerado, neste momento, um Deus no mundo matemático.

Tinha uma reputação impecável.

A geometria de Euclides nos ajudou a navegar pelo mundo, a construir cidades e nações.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Poderia ter dito qualquer coisa que a maioria dos matemáticos teria acreditado, mas se manteve em silêncio: não compartilhou com ninguém sua suspeita de que o espaço pudesse ser disforme.

‘Descobertas radicais’

Enquanto isso, na Hungria, Farkas Bolyai, outro matemático, também contemplava cenários em que a geometria de Euclides poderia ser falsa.

Bolyai havia estudado com Gauss na Universidade de Göttingen, na Alemanha, e voltado para sua casa na Transilvânia, na Romênia, onde havia passado anos lutando sem sucesso com a possibilidade de novas geometrias. Esse esforço o havia quase destruído.

“Viajei para além de todos os recifes desse infernal Mar Morto e sempre voltei com os mastros e velas danificados. Arrisquei sem pensar toda minha vida e felicidade.”

János Bolyai descobriu o que chamou de ‘mundos imaginários’

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

János Bolyai descobriu o que chamou de ‘mundos imaginários’.

Em 1823, recebeu uma carta do filho, também matemático, que estava com seu batalhão do Exército em Timisoara.

“Meu querido pai, tenho tantas coisas sobre as quais te escrever a respeito de minhas novas descobertas, que não posso fazer outra coisa que escrever essa carta, sem esperar sua resposta à minha carta anterior, e talvez não deveria fazê-lo, mas encontrei coisas lindas, que até a mim me surpreenderam, e seria uma pena perdê-las; meu querido pai verá e saberá, não posso dizer mais, apenas que do nada criei um mundo novo e estranho.”

O filho de Farkas Bolyai, János, havia descoberto o que chamou de “mundos imaginários”; mundos matemáticos que não satisfaziam os axiomas de Euclides, que pareciam ser completamente consistentes e sem contradições.

Bolyai escreveu imediatamente para o amigo Gauss contando as emocionantes descobertas que seu filho havia feito. Na sequência, Gauss enviou uma carta a um colega, elogiando o pensamento brilhante do jovem matemático.

“Recentemente, recebi da Hungria um pequeno artigo sobre a geometria não-euclidiana. O escritor é um jovem oficial austríaco, filho de um dos meus primeiros amigos. Considero o jovem geômetra J. Bolyai um gênio de primeira classe.”

Mas, na carta que escreveu a Bolyai, o tom foi bem diferente:

“Se começasse dizendo que não posso elogiar este trabalho, certamente ficaria surpreso por um momento. Mas não posso dizer o contrário. Elogiá-lo seria elogiar a mim mesmo. De fato, todo o conteúdo da obra, o caminho tomado por seu filho, os resultados aos quais se dirige, coincidem quase completamente com as minhas reflexões, que ocuparam parcialmente a minha mente nos últimos 30 ou 35 anos”.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Uma carta de Gauss sobre as ideias de János Bolyai deixou o jovem geômetra desconsolado.

Uma carta de Gauss sobre as ideias de János Bolyai deixou o jovem geômetra desconsolado

O jovem János ficou completamente inconsolável. Seu pai tentou confortá-lo: “Certas coisas têm sua época, quando se encontram em locais diferentes, como a primavera quando as violetas florescem em todas as partes”.

Apesar do incentivo do pai para publicar, János Bolyai não escreveu suas ideias até alguns anos depois. Foi tarde demais.

Ele descobriu pouco depois que o matemático russo Nikolái Lobachevski havia publicado ideias muito similares, dois anos antes dele.

Além das três dimensões

As geometrias radicais de Bolyai e Lobachevski estavam confinadas a nosso universo tridimensional.

Mas foi um aluno de Gauss, na Universidade de Göttingen, que levou essas novas geometrias para uma direção ainda mais exótica.

Bernhard Riemann era um matemático tímido e brilhante, que sofria de problemas de saúde bastante sérios. Um dos seus contemporâneos, Richard Dedekind, escreveu sobre ele:

“Riemann está muito infeliz. Sua vida solitária e seu sofrimento físico o tornaram extremamente hipocondríaco e desconfiado de outras pessoas e de si mesmo. Ele fez as coisas mais estranhas aqui só porque acredita que ninguém pode aguentá-lo”. Em sua solidão, Riemann estava explorando os contornos dos novos mundos que havia construído.

  Pressionado pela universidade, Riemann foi forçado a apresentar suas ideias radicais.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Pressionado pela universidade, Riemann foi forçado a apresentar suas ideias radicais

No verão de 1854, o introvertido Riemann enfrentou um grande obstáculo para poder se tornar professor na Universidade de Göttingen: teve que dar uma palestra pública na Faculdade de Filosofia. O departamento escolheu o tema: “Sobre as hipóteses que se encontram na base da geometria”.

Assim, ele se viu forçado a apresentar no dia 10 de junho as ideias radicais que havia formulado sobre a natureza da geometria. Na plateia, estava, entre outras pessoas, seu professor, Carl Frederick Gauss, campeão de matemática da época.

Ele mostrou aos matemáticos presentes como ver em quatro, cinco, seis ou mais dimensões, inclusive em N dimensões. Descreveu formas que só podiam ser vistas com as mentes dos matemáticos e as fez tão tangíveis para quem as escutava, como os objetos 3D são para a maioria das pessoas.

Se você não é matemático, há um lugar em que você pode experimentar algo próximo da quarta dimensão: o Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson.

  O Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson, representa a ideia da quarta dimensão..

O Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson, representa a ideia da quarta dimensão..

O Grande Arco de La Défense, em Paris, criado pelo arquiteto Johan Otto von Spreckleson, representa a ideia da quarta dimensão

É um cubo de quatro dimensões no coração de uma Paris tridimensional, uma estrutura absolutamente impressionante pela qual poderiam passar as torres da Catedral de Notre Dame.

Mas mais surpreendente ainda é o poder da ideia que representa. Um supercubo no meio da capital francesa, com 16 esquinas, 32 bordas e 24 faces… extraordinário!

O arquiteto abriu para todos nós uma porta para outro mundo. Mas, para compreender realmente a vida além de três dimensões, se faz necessária a revolucionária matemática de Riemann.

Inspiração para Einstein

Cinco décadas após a célebre conferência de 1854, as ideias de Riemann viraram realidade.

Einstein estava tentando contemplar a estrutura do espaço quando se deparou com as teorias curvas do espaço N-dimensional desenvolvidas por Riemann.

“A princípio, ele não gostou. Pensou: ‘Os matemáticos complicam tanto a vida!'”, destaca o físico Roger Penrose.

 Segundo Einstein, os corpos têm um efeito de curvatura na estrutura do espaço-tempo ao seu redor.

Os matemáticos que ajudaram Einstein e sem os quais a Teoria da Relatividade não funcionaria.

Segundo Einstein, os corpos têm um efeito de curvatura na estrutura do espaço-tempo ao seu redor

“Mas ele logo soube que era o prisma certo, e era absolutamente crucial, porque essa geometria quadridimensional se enquadrava nas outras três dimensões, e Einstein se deu conta que poderia generalizá-lo da mesma maneira com que Reimann havia generalizado a geometria euclidiana ao torná-la curva.”

Usando a matemática de Riemann, Einstein promoveu um avanço extraordinário sobre a natureza do Universo: o tempo, ele descobriu, era a quarta dimensão.
A nova geometria de Riemann permitiu unificar espaço e tempo. E as estranhas geometrias curvas pensadas pela primeira vez por Gauss, descritas por Bolyai e Lobachevsky e generalizadas por Riemann, o ajudaram a resolver a relatividade.

Ao medir a distância entre dois pontos no espaço-tempo usando a geometria de Euclides, surgem diversos paradoxos preocupantes. Mas, quando se utiliza as geometrias não euclidianas de Bolyai e Lobachevsky, os paradoxos se dissolvem.

As geometrias destes matemáticos do século 19 foram a chave para a criação da Teoria da Relatividade. Essas ideias traçaram o mapa para navegar na estrutura do espaço e do tempo.

 

Pesquisadores confirmam teoria da relatividade de Einstein ao estudar estrela orbitando em buraco negro

É a primeira vez que a teoria é confirmada na região perto de um buraco negro supermassivo. Medição foi feita por “super” telescópio no Chile.

Ilustração mostra trajetória da estrela nos últimos meses ao redor do buraco negro (Foto: M. KORNMESSER/ESO)

Ilustração mostra trajetória da estrela nos últimos meses ao redor do buraco negro (Foto: M. KORNMESSER/ESO)

ma única estrela, girando em torno do enorme buraco negro no centro da Via Láctea, forneceu aos astrônomos uma nova prova de que Albert Einstein estava certo sobre a gravidade.

Há mais de 100 anos, a teoria geral da relatividade de Einstein revelou que a gravidade é o resultado da curvatura espaço-tempo, criada pela presença de massa e energia. Agora, em um artigo publicado nesta quinta-feira (26) na “Astronomy & Astrophysics”, uma equipe de pesquisadores relata a observação de uma característica da relatividade geral conhecida como redshift gravitacional.

Observações feitas com o telescópio conhecido como “Very Large Telescope” (telescópio muito grande, em tradução livre), do Observatório do Sul Europeu (ESO), revelaram pela primeira vez os efeitos previstos pela relatividade geral de Einstein sobre o movimento de uma estrela que passa pelo campo gravitacional perto do buraco negro supermassivo no centro da Via Láctea. Este resultado representa o ponto alto de uma campanha de observação de 26 anos usando os telescópios do ESO no Chile.

Buraco negro

Obscurecido pelas densas nuvens de poeira absorvente, o buraco negro supermassivo mais próximo da Terra está a 26.000 anos-luz de distância, no centro da Via Láctea. Com uma massa de quatro milhões de vezes a do Sol, o buraco negro é cercado por um pequeno grupo de estrelas que orbitam em torno dele em alta velocidade.

Esse ambiente extremo – o campo gravitacional mais forte de nossa galáxia – o torna o local perfeito para explorar a física gravitacional e, particularmente, testar a teoria geral da relatividade de Einstein.

A medição é a primeira vez que a relatividade geral foi confirmada na região perto de um buraco negro supermassivo.

À medida que a luz escapa de uma região com um forte campo gravitacional, suas ondas são esticadas, tornando a luz mais vermelha, em um processo conhecido como redshift gravitacional. Os cientistas, uma equipe conhecida como a colaboração GRAVITY, usaram o Very Large Telescope, localizado no deserto de Atacama, no Chile, para demonstrar que a luz da estrela foi deslocada para o vermelho pela quantidade prevista pela relatividade geral.

Os cientistas já tinha observado o redshift gravitacional antes. Na verdade, os satélites de GPS não funcionariam corretamente se o redshift gravitacional não fosse levado em consideração. Mas tais efeitos nunca foram vistos nas proximidades de um buraco negro, onde a gravidade é mais forte.

“Isso é completamente novo, e acho que é isso que torna emocionante – fazer esses mesmos experimentos não na Terra ou no sistema solar, mas perto de um buraco negro”, diz o físico Clifford Will da Universidade da Flórida em Gainesville.
A estrela S2
No “coração” da Via Láctea, esconde-se um enorme buraco negro supermassivo, com uma massa de cerca de 4 milhões de vezes a do sol. Muitas estrelas giram em torno deste buraco negro. Os pesquisadores se concentraram em uma estrela, conhecida como S2, que completa uma órbita elíptica ao redor do buraco negro a cada 16 anos.

Órbita é uma trajetória fechada que um astro faz em torno de outro. Órbita elíptica é o tipo de órbita feita, e nesse caso, a elipse é como um círculo achatado (e não circular). A órbita de todos os planetas do Sistema Solar é elíptica.

É a primeira vez que a teoria é confirmada na região perto de um buraco negro supermassivo. Medição foi feita por "super" telescópio no Chile.

Pesquisadores confirmam teoria da relatividade de Einstein ao estudar estrela orbitando em buraco negro

Em maio de 2018, a estrela ficou mais próxima do buraco negro, atingindo 3% da velocidade da luz – extremamente rápida para uma estrela. Nesse ponto, a estrela estava a apenas 20 bilhões de quilômetros do buraco negro. O que pode parecer distante, mas é apenas quatro vezes a distância entre o sol e Netuno.

Novas observações astronômicas reforçam teoria da relatividade

Novas observações astronômicas apresentaram provas adicionais que reforçam uma das premissas da teoria geral da relatividade, que dita que todos os objetos em queda livre em um campo gravitacional se aceleram de forma idêntica, segundo um trabalho publicado nesta quarta-feira na revista Nature.

Novas observações astronômicas reforçam teoria da relatividade

A teoria, desenvolvida por Albert Einstein em 1915, diz que a aceleração deve ser a mesma com independência do próprio campo gravitacional dos corpos que caem, inclusive se forem objetos tão maciços como uma estrela de nêutrons.

O princípio que Einstein usou na sua teoria já tinha sido defendido antes por cientistas como Galileu Galilei, no século 16, e diversos experimentos o demonstraram em vários ambientes.

Em 1971, o astronauta americano David Scott protagonizou uma das experiências mais conhecidas, ao deixar cair sobre a superfície da lua um martelo e uma pluma, que chegaram ao solo ao mesmo tempo.

Para pôr a toda prova esse prognóstico em um ambiente mais extremo, um grupo do Instituto Holandês de Radioastronomia (ASTRON) liderado por Anne Archibald estudou o movimento de um sistema estelar triplo, formado por uma estrela de nêutrons orbitada por uma anã branca, que por sua vez mantêm outra anã branca orbitando a uma distância maior.

Os físicos analisaram como a atração da estrela mais distante afeta o sistema binário interior, que também conta com um potente campo gravitacional.

Teoria quântica vence Einstein mais uma vez em estudo holandês

Os autores do estudo publicado na Nature calcularam que a diferença entre as acelerações detectadas na anã branca e a estrela de nêutrons é da ordem de apenas 2,6 milionésimos, o que apoia o princípio de equivalência postulado pela relatividade geral.

As observações de Archibald aprimoram as obtidas até o momento em testes similares, que tinham chegado a uma resolução de milésimos.

“Se a estrela de nêutrons e a anã branca interna caíssem com diferentes acelerações para a anã branca do exterior, seria perceptível uma ligeira deformação na órbita do sistema interior”, afirma o físico Clifford Will, da Universidade da Flórida, em artigo na “Nature” que acompanha o estudo do grupo holandês.

“Archibald e seus colegas apresentam uma análise baseada em cerca de seis anos de coleta de dados na qual não há provas dessa deformação”, descreve Will.

Pesquisadores encontram a estrela mais distante do universo

Uma equipe internacional de pesquisadores encontrou a estrela mais distante já vista, a nove bilhões de anos-luz da Terra, segundo um estudo publicado nesta segunda-feira pela revista “Nature Astronomy”.

ESTRELA MAIS DISTANTE - Pesquisadores encontram a estrela mais distante já vista, a nove bilhões de anos-luz da Terra, que foi batizada de Icarus (um fenômeno conhecido como lente gravitacional, no qual um objeto amplia a luz dos

Pesquisadores encontram a estrela mais distante do universo.

Enquanto os astrônomos observavam com o Telescópio Espacial Hubble o aglomerado de galáxias MACS J1149+2223, a cinco bilhões de anos-luz de distância, notaram uma luz ao fundo da imagem.

A equipe, liderada pelo pesquisador Patrick Kelly da Universidade de Berkeley (Califórnia), nomeou a estrela supergigante azul de Icarus, cujo brilho foi ampliado duas mil vezes pela gravidade do aglomerado de galáxias.

Essa gravidade reduziu o espaço-tempo para magnificar a imagem de Icarus, um fenômeno conhecido como lente gravitacional, no qual um objeto amplia a luz dos objetos cósmicos situados diretamente atrás deles.

A descoberta é interessante porque as estrelas individuais, ao contrário das galáxias, são difíceis de serem detectadas devido à luz fraca.

Além disso, o descobrimento de Icarus é importante para os pesquisadores que estudam a matéria escura porque sua interação com a matéria tem um efeito considerável no padrão de estrelas ampliadas.

A partir do padrão de estrelas magnificadas neste estudo, a equipe de cientistas, formada também por pesquisadores da Universidade de Tóquio, puderam excluir a possibilidade que a matéria escura seja formada principalmente por uma grande quantidade de buracos negros com massas dezenas de vezes maiores que o Sol.

Os astrônomos determinaram que ainda descobrirão muitas estrelas magnificadas quando entrar em funcionamento o Telescópio James Webb, propriedade da Nasa, da Agência Espacial Europeia e da Agência Espacial do Canadá.

Seria a misteriosa matéria escura formada por buracos negros

Sabe tudo que existe? Você, sua mãe, o Sol, a constelação de Órion e os bons bilhões de galáxias que não são a Via Láctea? Pois é, essa porção de coisas – que em conjunto é chamada pelos físicos de “matéria bariônica” – corresponde a só 15% da massa do Universo. O resto é uma substância misteriosa chamada “matéria escura”. Ela não interage com a matéria normal. Não emite radiação detectável nem reflete a radiação que a atinge. Inclusive, pode ser que haja um pouquinho dela debaixo do seu nariz nesse exato momento. Tanto faz.

 A ideia de que um anel de buracos negros possa explicar o movimento das galáxias é improvável – mas não impossível

Seria a misteriosa matéria escura formada por buracos negros?

Só sabemos que ela está lá porque, se não fosse sua influência gravitacional, as galáxias simplesmente não poderiam girar da maneira como giram. A matéria escura existe para justificar um dos únicos descompassos entre as previsões teóricas da elegante Relatividade Geral de Einstein e o que acontece no espaço de verdade.

A maior parte dos especialistas concorda que, se a matéria escura existe mesmo, então ela é algo diferente dos prótons, nêutrons e elétrons que nos compõem. Algo que ainda está além do alcance da ciência. Mas um pequeno grupo de dissidentes acha que ela é composta de velhos conhecidos nossos: buracos negros. Montes deles.

Essa hipótese não é nova – afinal, astros tão pesados que engolem até a luz são bons candidatos a formar coisas invisíveis, capazes de influenciar a rotação de galáxias inteiras. Mas da década de 1970 pra cá, diversas observações, simulações de computador e modelos teóricos foram na contramão dessa hipótese. Ela só voltou a ser popular no mainstream científico em 2015, quando o observatório LIGO detectou pela primeira vez ondas gravitacionais oriundas de um choque entre dois buracos negros – cada um deles com dezenas de vezes a massa do Sol.

Não é que a colisão tenha invalidado tudo que se sabia sobre matéria escura até então: a teoria continua tão sólida quanto sempre foi. Mas a percepção de que há choques entre buracos negros ocorrendo com frequência a bilhões de anos-luz daqui reacendeu em alguns físicos cabeça aberta a esperança de que esses monstros cósmicos sejam mais comuns do que parece – de que sua população seja grande o suficiente para justificar uma teoria alternativa sobre o inexplicável equilíbrio gravitacional de aglomerados de estrelas como a Via Láctea.

Essa alternativa à matéria escura vai assim: para dar o empurrãozinho que corresponde às observações – que reconciliaria Einstein com o Universo real, como já explicado há alguns parágrafos –, todas as galáxias precisariam estar assentadas em uma espécie de cama (um halo) formada por milhares de buracos negros primordiais. Um buraco negro primordial não é um dos comuns, formado quando uma estrela de altíssima massa explode ao final de sua vida. Ele é uma singularidade que nasceu na juventude do Universo, provavelmente por causa do “desabamento” de enormes nuvens de gás hidrogênio – sem antes passar pelo estágio de estrela.

Esse halo de buracos primordiais teria densidade e outras características diferentes de um halo formado por partículas da misteriosa matéria escura, o que permitiria um desempate entre as duas ideias. Para ver se essas diferenças poderiam ser medidas por nós, daqui da Terra, a equipe do astrônomo Qirong Zhu, da Universidade Estadual da Pensilvânia, rodou uma simulação de computador para descobrir como, exatamente, galáxias anãs seriam afetadas pelo fenômeno. Galáxias anãs têm pouco brilho e os corpos que as compõem estão mais sujeitos a serem influenciados visivelmente pela presença de corpos invisíveis em seu entorno, o que as tornam bons laboratórios para especulações cósmicas.

Eles concluíram que sim, que buracos negros são uma alternativa viável à matéria escura, e que nós conseguiríamos notar as diferenças entre os dois. Basta que as singularidades tenham algo entre 2 e 14 vezes a massa do Sol, o que é bem aceitável. Mas isso não significa, é claro, que o mistério esteja resolvido: ainda estamos muito, muito longe de saber a identidade de 85% do Universo. Há mais coisas no vão entre uma galáxia e outra do que imagina nossa vã filosofia.

 

 

Equipe acha galáxia sem matéria escura

Um grupo de astrônomos americanos publicou uma descoberta extremamente importante para confirmar a existência da misteriosa matéria escura. Eles encontraram uma galáxia sem matéria escura.Equipe acha galáxia sem matéria escura

Parece paradoxal que uma galáxia assim possa ser evidência da existência de algo que ela não tem, mas é exatamente esse o caso. Palmas, portanto, para a galáxia NGC1052-DF2, localizada a aproximadamente 65 milhões de anos-luz daqui.

Os astrônomos costumam “pesar” galáxias medindo a luz que elas emanam — que dão pistas da massa existente em termos de gás e estrelas ali — e o movimento dos objetos mais externos da galáxia em questão, que, em sua órbita, segundo a gravidade conforme descrita pela teoria da relatividade geral, precisam obedecer à quantidade total de massa presente. Normalmente, esses dois conjuntos de medidas sugerem que cada galáxia tem cerca de 30 vezes mais massa do que a que é visível diretamente por sua luz. Daí o nome “matéria escura” — trata-se de algo que exerce gravidade, mas não interage com a matéria convencional de nenhum outro modo.

Entra em cena a galáxia NGC1052-DF2. Combinando observações feitas com o Telescópio Espacial Hubble ao estudo espectroscópico de dez objetos pertencentes à galáxia que parecem ser aglomerados globulares de estrelas, feito com o telescópio de 10 metros do Observatório Keck, no Havaí, os pesquisadores puderam medir tanto a massa visível quanto a massa total, baseada no movimento dos aglomerados. E aí veio a surpresa: a massa visível bate com a massa total. Estamos diante de uma galáxia que não tem matéria escura.

“NGC1052-DF2 demonstra que a matéria escura não está sempre associada à matéria bariônica em escalas galácticas”, afirmam Pieter van Dokkum, da Universidade Yale, e seus colegas, em artigo publicado nesta semana no periódico Nature.

Equipe acha galáxia sem matéria escura

O achado é um grande alívio e compõe o conjunto de evidências reunidas pelos cientistas de que a matéria escura existe mesmo, e não é simplesmente um artefato gerado por uma compreensão deficiente da lei da gravidade nas maiores escalas. Se o que medimos como matéria escura fosse na verdade um problema com a teoria da relatividade geral, sempre que houvesse grande quantidade de matéria convencional, bariônica, haveria também um sinal de matéria escura.

No passado, os pesquisadores já haviam encontrado um par de aglomerados de galáxias distante, conhecido como o “aglomerado da bala”, em que a colisão entre os dois separou matéria escura da matéria convencional. Agora, com a descoberta de que a galáxia NGC1052-DF2 não tem matéria escura, fica mais uma vez constatado que não se trata apenas de um entendimento deficiente de como funciona a gravidade — há algo real, que pode ou não estar presente em galáxias e aglomerados galácticos.

Há modelos que explicam como pode haver galáxias sem matéria escura. No caso em questão, uma hipótese provável, segundo os cientistas, é que a galáxia tenha se formado a partir de um bolsão de gás que foi ejetado durante uma colisão de galáxias maiores. Na trombada, uma parte do gás é ejetada, mas a matéria escura das galáxias maiores não, reunindo-se ao redor das duas galáxias fundidas. “A localização [de NGC1052-DF2] próxima a uma galáxia elíptica e sua velocidade peculiarmente alta são consistentes com essa ideia”, explicam os cientistas em seu artigo.

Ao que parece, Einstein triunfará mais uma vez, e as teorias alternativas da gravidade capazes de dispensar a existência da matéria escura vão ficando pelo caminho. Resta, contudo, o grande enigma: se já sabemos o que a matéria escura não é, resta descobrir o que de fato ela é! De que é feita? Que tipo de partículas? Por que elas não interagem com a luz e com a matéria, exceto pela gravidade? Galáxias como a NGC1052-DF2 são só a proverbial ponta do iceberg.