Novo modelo físico explica de onde veio a água da Terra

Jovem pesquisador brasileiro e seu antigo supervisor de pós-doutorado acabam de propor um novo modelo físico para explicar a origem da água

Munidos da lei da gravitação universal de Newton (cuja publicação completou 330 anos em 2017) e de pesados recursos computacionais (para poder aplicar a lei a mais de 10 mil corpos em interação), um jovem pesquisador brasileiro e seu antigo supervisor de pós-doutorado acabam de propor um novo modelo físico para explicar a origem da água na Terra e nos demais objetos de tipo terrestre do Sistema Solar.

Nova teoria de cientista brasileiro explica de onde veio a água da Terra

Novo modelo físico explica de onde veio a água da Terra

O artigo assinado por ambos, Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion, foi publicado na revista Icarus.

Convém afastar logo a ideia de uma Terra que recebeu toda a sua água por meio do impacto de cometas oriundos de regiões muito distantes. Tais ‘entregas’ também ocorreram, mas sua contribuição foi posterior e percentualmente muito menos importante. 

Os autores são André Izidoro, da Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista (Unesp) – bolsista FAPESP na modalidade Apoio a Jovens Pesquisadores –, e o astrofísico norte-americano Sean Raymond, do Laboratoire d’Astrophysique de Bordeaux, na França.

“A ideia de que a água da Terra veio predominantemente por meio de asteroides não é nova. Ela é praticamente consensual entre os pesquisadores. Nosso trabalho não é pioneiro em relação a isso. O que conseguimos foi associar esse aporte de asteroides ao processo de formação de Júpiter. E, com base no modelo resultante, ‘entregar à Terra’ quantidades de água consistentes com os valores estimados atualmente”, disse Izidoro à Agência FAPESP.

O valor de água existente na Terra varia muito de uma estimativa a outra. Usando como unidade de medida o “oceano terrestre”, o que corresponde a toda a água dos oceanos da Terra, alguns falam em três a quatro “oceanos terrestres”. Outros, em dezenas. A variação decorre do fato de não se saber quanta água existe no manto do planeta. E nem mesmo na crosta, aprisionada no interior das rochas. De qualquer forma, o modelo proposto dá conta do amplo leque de estimativas.

“Convém afastar logo a ideia de uma Terra que recebeu toda a sua água por meio do impacto de cometas oriundos de regiões muito distantes. Tais ‘entregas’ também ocorreram, mas sua contribuição foi posterior e percentualmente muito menos importante. A maior parte da água chegou à região atualmente ocupada pela órbita da Terra antes que o planeta tivesse se constituído”, disse Izidoro.

Novo modelo físico explica de onde veio a água da Terra

Nova teoria de cientista brasileiro explica de onde veio a água da Terra

Para entender “como”, vale recapitular o cenário definido pelo modelo convencional de formação do Sistema Solar, acrescentando o novo modelo relativo ao aporte de água.

A condição inicial é uma gigantesca nuvem de gás e poeira cósmica. Devido a algum tipo de perturbação gravitacional ou turbulência local, essa nuvem entra em colapso e passa a ser atraída por uma determinada região de seu interior, que configura um centro.

Com o aporte de matéria, o centro torna-se tão massivo e aquecido que, cerca de 4,5 bilhões de anos atrás, entra em processo de fusão nuclear, transformando-se em estrela.

Enquanto isso, a nuvem remanescente continua a orbitar o centro e seu material se aglutina, formando um disco, que posteriormente se fragmenta, definindo os nichos protoplanetários.

“Estima-se que, nesse disco, a região rica em água se localizava a partir de algumas unidades astronômicas de distância do Sol. Na região interior, mais próxima da estrela, a temperatura era alta demais para que a água pudesse se acumular, exceto talvez em muito pequena quantidade, na forma de vapor”, explicou Izidoro.

Por definição, a unidade astronômica (AU) é a distância média da Terra ao Sol. Entre 1,8 AU e 3,2 AU localiza-se atualmente o Cinturão de Asteroides, com centenas de milhares de objetos.

Nessa faixa, os asteroides que ocupam a região entre 1,8 AU e 2,5 AU são predominantemente pobres em água, enquanto a maioria daqueles situados além de 2,5 AU são ricos.

O processo de formação de Júpiter pode explicar a origem dessa divisão, de acordo com o pesquisador.

“O tempo transcorrido entre a formação do Sol e a completa dissipação do disco gasoso foi bastante curto, na escala cosmogônica: de apenas 5 milhões a no máximo 10 milhões de anos.

E a formação de planetas gasosos tão massivos quanto Júpiter e Saturno só pode ter ocorrido durante essa fase de juventude do Sistema Solar.

Então, foi durante essa fase que o rápido crescimento de Júpiter perturbou gravitacionalmente milhares de planetesimais ricos em água, deslocando-os de suas órbitas originais”, disse Izidoro.

Convém afastar logo a ideia de uma Terra que recebeu toda a sua água por meio do impacto de cometas oriundos de regiões muito distantes. Tais ‘entregas’ também ocorreram, mas sua contribuição foi posterior e percentualmente muito menos importante. 

Estima-se que Júpiter possua um núcleo sólido, com massa equivalente a algumas vezes a massa da Terra. Esse núcleo sólido é recoberto por um extenso e massivo envoltório gasoso.

Júpiter só pode ter adquirido tal envoltório durante a fase da nebulosa solar, quando o sistema estava em formação e havia enorme quantidade de material gasoso disponível.

Devido à vultosa massa do embrião de Júpiter, o processo de aquisição do gás, por atração gravitacional, foi muito rápido. Nas vizinhanças do planeta gigante em formação, situados além da “linha de gelo”, milhares de planetesimais [corpos rochosos semelhantes a asteroides] orbitavam o centro do disco, atraindo-se, simultaneamente, uns aos outros.

O rápido aumento da massa de Júpiter rompeu o precário equilíbrio gravitacional desse sistema de muitos corpos. Vários planetesimais foram engolidos pelo Proto-Júpiter.

Outros, enviados para os confins do Sistema Solar. E uma pequena fração, arremessada para a região interior do disco, entregando água para o material que, mais tarde, formaria os planetas terrestres e constituiria o Cinturão de Asteroides.

Admite-se que uma pequena fração da água existente na Terra tenha chegado mais tarde, mediante o choque de cometas e asteroides. E que uma fração ainda menor possa ter-se formado localmente, por meio de processos físico-químicos endógenos. Mas a maior parte da água veio com os planetesimais

“O período de formação da Terra é datado entre 30 milhões e 150 milhões de anos após a formação do Sol. Quando isso ocorreu, a região do disco onde nosso planeta se constituiu já dispunha de bastante água, entregue pelos planetesimais deslocados por Júpiter e também por Saturno. Admite-se que uma pequena fração da água existente na Terra tenha chegado mais tarde, mediante o choque de cometas e asteroides. E que uma fração ainda menor possa ter-se formado localmente, por meio de processos físico-químicos endógenos. Mas a maior parte da água veio com os planetesimais”, disse Izidoro.

A afirmação sustenta-se no modelo construído por ele e seu antigo supervisor.

“Com o emprego de supercomputadores, simulamos a interação gravitacional entre os múltiplos corpos por meio de integradores numéricos, em linguagem Fortran. E introduzimos uma modificação para incluir os efeitos do gás presente no meio durante a época de formação dos planetas. Isso porque, além de todas as interações gravitacionais em cena, os planetesimais sofreram também a ação do chamado ‘arrasto gasoso’, que é, basicamente, um ‘vento’ em sentido contrário ao do movimento – o mesmo tipo de efeito que um ciclista percebe ao se deslocar, decorrente da colisão das moléculas do ar com seu corpo”, descreveu o pesquisador.

O “arrasto gasoso” fez com que as órbitas dos planetesimais deslocados por Júpiter, inicialmente muito alongadas, fossem, pouco a pouco, “circularizadas”. Foi tal efeito que implantou esses objetos na zona que corresponde atualmente ao Cinturão de Asteroides.

Um parâmetro fundamental para esse tipo de simulação é a massa total da nebulosa solar no início do processo. Para chegar a esse número, Izidoro e Raymond utilizaram um modelo proposto no início da década de 1970.

Ele parte do levantamento da massa de todos os objetos atualmente observados no Sistema Solar.

O período de formação da Terra é datado entre 30 milhões e 150 milhões de anos após a formação do Sol. Quando isso ocorreu, a região do disco onde nosso planeta se constituiu já dispunha de bastante água, entregue pelos planetesimais deslocados por Júpiter e também por Saturno.

Para compensar as perdas decorrentes da ejeção de matéria durante a fase de formação do sistema, o modelo corrige as massas atuais dos diferentes objetos, fazendo com que suas proporções de elementos pesados (oxigênio, carbono etc.) e de elementos leves (hidrogênio, hélio etc.) fiquem iguais às do Sol.

Isso com base na hipótese de que o disco de gás e o Sol tinham a mesma composição. Feitas as alterações, obtém-se a massa presumível da nuvem primitiva.

“Além disso, nosso novo modelo considerou também os diferentes tamanhos dos atuais asteroides, que vão de quilômetros a centenas de quilômetros de extensão, porque o gás tende a afetar mais os asteroides menores”, disse Izidoro.

A simulação feita a partir destas considerações pode ser vista no vídeo a seguir:

 

No eixo horizontal, foram marcadas as distâncias dos objetos ao Sol, em unidades astronômicas (AU). No eixo vertical, foram marcadas as excentricidades das órbitas dos objetos. A progressão da animação mostra como o sistema evoluiu em sua fase de formação.

Os dois pontos pretos, situados, respectivamente, a pouco menos de 5,5 AU e mais de 7,0 AU, são, pela ordem, Júpiter e Saturno.

Durante a animação, esses corpos crescem pelo acréscimo de gás da nuvem protoplanetária. E seu crescimento desestabiliza os planetesimais e os lança em várias direções. As diferentes cores atribuídas aos planetesimais servem apenas para mostrar onde eles estavam no início e para onde foram lançados. A área cinzenta assinala a posição atual do Cinturão de Asteroides. E o cômputo do tempo, em milhares de anos, aparece na porção superior do gráfico.

A segunda animação acrescenta um importante ingrediente, que é a migração de Júpiter e Saturno para mais perto do Sol durante o processo de crescimento.

 

Todos os cálculos de interação gravitacional entre os corpos em presença foram feitos a partir da Lei de Newton. O integrador numérico possibilitou calcular a posição de cada corpo em vários momentos – algo que, dado o número de corpos, da ordem de 10 mil, seria impossível fazer sem os recursos computacionais utilizados.

O artigo Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion, de Sean N. Raymond e André Izidoro, pode ser lido aqui e aqui.

Esta entrada foi publicada em Astrofísica, Astronomia, Notícias. Adicione o link permanente aos seus favoritos.

Deixe uma resposta